
Rodrigo Broggi

Análise estrutural de tubulações Pipe-in-Pipe

São Paulo - Brasil
2014

Rodrigo Broggi

Análise estrutural de tubulações Pipe-in-Pipe

Monografia apresentada à Escola Politécnica
da Universidade de São Paulo para a obtenção
do título de Engenheiro Mecânico

Universidade de São Paulo – USP

Escola Politécnica

Departamento de Engenharia Mecânica

Orientador: Prof. Dr. Roberto Ramos Jr.
Coorientador: Prof. Dr. Luca Formaggia

São Paulo - Brasil
2014

Broggi, Rodrigo
Análise estrutural de tubulações pipe-in-pipe / R. Broggi. --

São Paulo, 2014.
237 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de São Paulo. Departamento de Engenharia Mecânica.

1.Tubulações 2.Risers (Estudo numérico) I.Universidade de
São Paulo. Escola Politécnica. Departamento de Engenharia
Mecânica II.t.

Este trabalho é dedicado a: meus avós

Agradecimentos

Agradeço antes de tudo aos professores que me estimularam em todo meu percurso
acadêmico, em especial: ao professor Roberto Ramos pela sua seriedade, disponibilidade e
dedicação nos cursos ministrados, uma tendência cada vez mais rara no mundo universitário;
ao professor Sandro Salsa, pela sua capacidade de ensinar temas complicadíssimos com
simplicidade e pela sua preocupação com a real instrução de seus alunos; à memória do
professor Martinho que, com afeto e dedicação, exerceu a sua profissão até o último dos
seus dias.

Agradeço à Escola Politécnica e seus funcionários por todo o apoio nos anos de
formação e pela oportunidade a mim concedida de estudar no exterior.

Finalmente agradeço à minha família por ter estimulado e possibilitado meus
estudos.

“If people do not believe that mathematics is simple,
it is only because they do not realize how complicated life is.

(John von Neumann)

Resumo

No presente trabalho são estudadas, sob o aspecto da resistência estrutu-
ral, tubulações conhecidas como risers na indústria do petróleo. Especificamente
será enfatizado um tipo de configuração chamado pipe-in-pipe que vem ganhando
importância e interesse no âmbito da exploração offshore principalmente graças
à sua eficiência no isolamento térmico. Sob algumas hipóteses iniciais é possível
dividir o estudo em duas etapas onde os efeitos que derivam do peso próprio imerso
da estrutura e do carregamento imposto pela corrente marítima são desacoplados
dos efeitos das pressões e da distribuição de temperatura: na primeira etapa, os
carregamentos são abordados de modo global usando as equações de catenária e com
essa técnica é possível determinar as trações resultantes em uma seção transversal
genérica, desprezando a resistência à flexão da tubulação. Nessa parte se concentram
as não-linearidades do problema que derivam das condições de contorno, das rela-
ções cinemáticas e do carregamento proveniente das correntes marítimas. Dada a
não-linearidade do modelo, é feito um estudo sobre a sensibilidade de resposta às
variações dos diversos parâmetros de cálculo para entender a importância relativa
de cada um no problema geral. A segunda parte é elaborada localmente de modo a
poder conservar as hipóteses de axissimetria e de pequenas deformações. Um estudo
comparativo é feito para avaliar a importância relativa dos efeitos decorrentes do
gradiente de temperatura, fenômeno que é frequentemente desprezado na literatura.

A abordagem matemático-numérica se baseia em modernas técnicas e mé-
todos quais formulações fracas ou variacionais para a resolução das equações a
derivadas parciais que derivam da mecânica dos sólidos e das relações cinemáticas,
constitutivas e de equilíbrio. Essa abordagem é ideal para aplicação de métodos
numéricos como o método dos elementos finitos (FEM) e o método de Newton,
principais instrumentos da teoria de análise numérica usados neste estudo. Foram
desenvolvidos códigos em linguagem C++ com o auxílio da biblioteca libmesh para
elementos finitos. Essa escolha foi feita pela eficiência que deriva das linguagens
compiladas de relativo baixo nível, pela versatilidade em comunicação com diversos
programas e extensões e pela facilidade de paralelização e refinamento de malha
(AMR - Adaptive Mesh Refinment). Além disso foram escritos alguns shell scripts e
gnuplot scripts para o gerenciamento dos executáveis e para o pós-processamento em
sistemas UNIX.

Quanto aos resultados, além da grande coerência com a literatura, foi possível
atingir um ótimo rendimento do ponto de vista numérico pelo fato de concentrar
as não-linearidades na etapa global (que é intrinsecamente 1D). Ainda no âmbito
do problema global, foi descoberto um método inédito e robusto que combina as
características dos métodos clássico e misto do método dos elementos finitos para um
melhor rendimento sob o ponto de vista da eficiência numérica e da confiabilidade de
convergência. Também foi possível verificar que o gradiente térmico tem um papel
importante no estudo desse tipo de estrutura sendo responsável por uma série de
modificações em relação à resposta em sua ausência.

Palavras-chaves: Pipe in pipe. Catenária. Elementos Finitos. C++. Mecâ-
nica dos sólidos. EDP não lineares.

Abstract

The aim of this work is to study the structural behavior of pipe-in-pipe risers.
This kind of structure is important in the offshore industry due to its improved
insulation performace. Under certain hypothesis it was possible to divide the problem
into two parts by uncoupling load effects derived from current and self weight from
load effects derived from thermal diffusion and pressures: in the first part, current
and self weight loads have been tackled from a global perspective using the catenary
equations. With this technic, it was possible to reach the traction in a given section
neglecting the flexural resistance. In this part some nonlinearities of the problem
have been dealt, namely boundary conditions, kinematic relation and current load
expression. Given those nonlinearities, a study has been made to understand the
relative importance of the input parameters by performing variations on each of
them and testing their response sensibility. In the second part, the pressure and
temperature loads have been tackled in a local fashion as to preserve axisymmetry
and small-displacement hypothesis. A comparison study has been made to evaluate
the relative importance of the thermal effects since it is often neglected in literature.

The mathematical approach is based on modern technics to solve partial
differential equations e.g. use of weak formulation and some functional analysis
contents. The differential equations arise from kinematic, equilibrium and constitutive
relations and the numerical methods as the FEM or Newton’s methods for their
solution are easily implemented when the mentioned mathematical tools are used.
Codes have been written in C++ language together with libmesh library for finite
elements method. This choice has been made due to the efficiency of compiled low
level languages, to the great compatibility with third part softwares and extensions
and to facilities on parallel implementations and grid refinement procedures (like
AMR - Adaptive Mesh Refinment). Furthermore some shell and gnuplot scripts have
been written to the management and post-processing in UNIX systems.

Results were coherent with literature data and it was possible to reach good
numerical performances since nonlinearities were present just in the intrinsically
1D global analysis. Yet, a new method was developed to solve the global analysis
problem by combining both classic and mixed FEM formulations and reaching a
more robust performance for convergence and stability. Finally the thermal effects
have been proved to have an important role in the study of this kind of structures
since they were responsible for considerable changes on final stress states both in
magnitude and distribution.

Key-words: Pipe-in-pipe. FEM. C++. Catenary. Solid Mechanics. Partial Differen-
tial Equations.

Lista de ilustrações

Figura 1 – SCR e FPU . 21
Figura 2 – Estrutura pipe-in-pipe . 22

Figura 3 – Exemplo ilustrativo. 31
Figura 4 – Exemplo ilustrativo segunda discretização. 32
Figura 5 – Mapa do elemento de referência ao elemento da malha. 35
Figura 6 – Cabo flexível deformado. 37
Figura 7 – Cabo flexível suspenso sob ação de correnteza estática. 41

Figura 8 – Temperatura da água do oceano em relação à profundidade. 60
Figura 9 – Popularidade linguagens de programação - 2013 67
Figura 10 –Procedimento de refinamento de malha combinado. 69

Figura 11 –Perfil do riser para diversos comprimentos 75
Figura 12 –Tração no riser para diversos comprimentos. 76
Figura 13 –Perfil do riser para diversas magnitudes de corrente. 77
Figura 14 –Tração no riser para diversas magnitudes de corrente. 79
Figura 15 –Perfil do riser para diversos valores de peso imerso. 80
Figura 16 –Tração no riser para diversos valores de peso imerso. 81
Figura 17 –Distribuição de temperatura radial: malha de 200 elementos e aproxi-

mação de segunda ordem. 83
Figura 18 –Distribuição de temperatura 2D: malha de 150x500 elementos e aproxi-

mação de segunda ordem. 83
Figura 19 –Deflexão radial ur em ausência do efeito térmico. 86
Figura 20 –Deflexão axial uz em ausência do efeito térmico. 87
Figura 21 –Tensão radial σr em ausência do efeito térmico. 87
Figura 22 –Tensão axial σz em ausência do efeito térmico. 88
Figura 23 –Tensão tangencial σθ em ausência do efeito térmico. 88
Figura 24 –Tensão equivalente de Von Mises σvm em ausência do efeito térmico. . . 89
Figura 25 –Deflexão radial ur em presença do efeito térmico 89
Figura 26 –Tensão radial σr e tangencial σθ em presença do efeito térmico. 90
Figura 27 –Tensão axial σz em presença do efeito térmico. 91
Figura 28 –Tensão equivalente de Von Mises σvm em presença do efeito térmico. . 91

Figura 29 –Sobreposição dos efeitos globais. 94

Figura 30 –Axioma de Euler/Postulado de Cauchy 101
Figura 31 –Deformação . 105

Lista de tabelas

Tabela 1 – Tempo de execução para diversas malhas 70

Tabela 2 – Dados do problema global . 74
Tabela 3 – Dados numéricos do problema global 74
Tabela 4 – Dados de difusão térmica . 82
Tabela 5 – Dados para o cálculo estrutural . 84
Tabela 6 – Dados da malha para a simulação sem efeitos térmicos 85
Tabela 7 – Coeficiente de expansão térmica . 89

Sumário

1 Introdução . 21

Introdução . 21

2 Revisão da Literatura . 25

Revisão da Literatura . 25
2.1 Enquadramento na teoria geral das EDPs 25

2.1.1 A formulação variacional do problema geral 26
2.1.2 A formulação variacional como princípio do trabalho virtual 28
2.1.3 Questões de existência e unicidade 29

2.2 Aproximação numérica pelo método de Galerkin 30
2.2.1 O método de Rayleigh-Ritz e introdução ao método dos elementos

finitos . 30
2.2.2 O método de Galerkin . 34

2.3 O método de Newton para solução de sistemas não lineares 36
2.4 O problema: análise global . 37

2.4.1 Equações de equilíbrio . 38
2.4.2 Relações Cinemáticas . 39
2.4.3 Relação Constitutiva . 40
2.4.4 Princípio da mínima energia potencial total e simplificações possíveis 40
2.4.5 Formulação Dual . 43

3 Materiais e métodos . 47

Materiais e métodos . 47
3.1 Análise e formulação do problema . 47

3.1.1 Formulação completa do problema global 47
3.1.1.1 Formulação fraca clássica 48
3.1.1.2 A formulação fraca mista 51

3.1.2 Discretização e aproximação com o método de Galerkin 54
3.1.2.1 Método de Galerkin - formulação clássica 55
3.1.2.2 Método de Galerkin - formulação mista 57

3.1.3 O problema local em sua formulação axissimétrica 59
3.1.3.1 Difusão térmica . 59
3.1.3.2 Inclusão do efeito térmico no problema axissimétrico . . . 62

3.2 Os instrumentos utilizados . 65

3.2.1 A linguagem C++ e a biblioteca libmesh 66
3.2.2 O método de refinamento cooperativo 67
3.2.3 Complexidade e eficiência do código para o problema axissimétrico . 70

4 Resultados . 73

Resultados . 73
4.1 Resultados do problema global . 73

4.1.1 Variação do comprimento . 74
4.1.2 Variação da magnitude de corrente 77
4.1.3 Variação da magnitude do peso imerso 78
4.1.4 Importância relativa das variações 78

4.2 Resultados do problema axissimétrico . 82
4.2.1 Resultados do problema de difusão de temperatura 82
4.2.2 Análise estrutural em ausência do efeito térmico 84
4.2.3 Análise estrutural em presença do efeito térmico 88

5 Discussão . 93

Discussão . 93

6 Conclusão . 97

Conclusão . 97

Anexos 99

ANEXO A Elasticidade linear estática . 101
A.1 Equações do equilibrio . 101
A.2 Cinemática e Congruência em Pequenas Deformações 103

A.2.1 Cinemática do meio e equações de campo 103
A.2.2 O tensor deformação . 104
A.2.3 Linearização . 106

A.3 Relações constitutivas e equação de Navier 107
A.3.1 Relações constitutivas e Lei de Hooke 107
A.3.2 Equação de Navier . 108

ANEXO B Complementos de análise funcional 109
B.1 Espaço Normado, de Banach e de Hilbert 109
B.2 Funcionais e formas bilineares . 111
B.3 Diferenciação em espaços lineares . 114

B.4 Distribuições . 114
B.5 Espaços de Sobolev . 118

Referências . 121

Apêndices 125

APÊNDICE A Códigos . 1
A.1 Código do problema de difusão de temperatura 1
A.2 Código do problema estrutural sem efeitos térmicos 18
A.3 Código do problema estrutural com efeitos térmicos 41
A.4 Código do problema da análise global . 41

A.4.1 Header - Protótipo das classes e das funções 41
A.4.2 Implementação das funções membro e auxiliares - source code . . . 56
A.4.3 main . 103

21

1 Introdução

Na indústria do petróleo, especificamente no segmento offshore, estruturas chamadas
risers são utilizadas no transporte do fluido extraído pela árvore de natal1, no solo submerso,
até as unidades flutuantes. Essas tubulações são submetidas a diversos tipos de solicitações
de natureza estática e dinâmica como pressões internas e externas, esforços impostos pelos
movimentos da plataforma, forças decorrentes das ações de correntezas, grandes gradientes
de temperatura e fenômenos de vibrações induzidas por vórtices.

Um tipo de riser muito utilizado pela sua eficiência e custo-benefício é o SCR
(steel catenary riser). Essa estrutura é assim chamada pois apesar de ser rígida à flexão
em pequenos comprimentos, quando os comprimentos são da ordem de grandeza da
profundidade do oceano essa rigidez é praticamente desprezível e seus efeitos são confinados
somente às proximidades das extremidades. Dessa maneira, a forma assumida pelo SCR
é ditada principalmente pelo seu peso próprio imerso e pelas forças hidrodinâmicas às
quais é submetido. Esse tipo de estrutura é utilizado em plataformas flutuantes, ditas
FPU (floating production unit) e liga diretamente o TDP (touch down point) na base do
oceano à plataforma, sem auxílio de bóias. A figura 1 esquematiza os principais elementos
mencionados.

Figura 1: SCR e FPU

Fonte: (PESCE; MARTINS; CHAKRABARTI, 2005)

1 A árvore de natal ou Cristmas tree é um conjunto de válvulas utilizadas na extração do petróleo do
subsolo.

22 Capítulo 1. Introdução

Muitos dos fenômenos relacionados ao problema são de caráter não linear sendo
grande parte relacionada a efeitos dinâmicos. Além disso, o problema possui diversas
escalas de tempo, comprometendo a eficiência e confiabilidade de métodos numéricos
nesse contexto. Cabe observar que, no entanto, não são somente os efeitos dinâmicos a
apresentar não linearidades: as condições de contorno do problema são do tipo contato,
os deslocamentos globais possuem grandes magnitudes e os carregamentos que derivam
das forças de correnteza são dependentes da forma da estrutura. Todos esses fatores são
intrinsecamente não lineares e dificultam a análise já em âmbito estático.

Outro fenômeno interessante é como o fluxo interno influencia o efeito do peso
próprio além de contribuir à rigidez à flexão efetiva dos cabos.

No âmbito desse tipo de estrutura, um tipo de riser que tem ganhado espaço nas
aplicações são as chamadas tubulações pipe-in-pipe que consistem na sobreposição radial
de múltiplas tubulações concêntricas, como ilustra a figura 2.

Figura 2: Estrutura pipe-in-pipe

Fonte: Bredero. . . (2014, http://www.brederoshaw.com/solutions/images/illustration_pip.jpg)

As principais partes são o tubo interno portante, o material isolante e o tubo externo
protetor. O material isolante possui características de resistência mecânica inferiores aos
outros e é protegido das ações de pressões hidrostáticas externas e danos mecânicos pelas
outras duas camadas. Outra grande vantagem está no fato que, sendo o tubo protetor
mantido a baixas temperaturas, podem ser utilizados processos convencionais e não muito
onerosos para a proteção contra a corrosão, como proteção catódica e revestimentos.

Existem dois principais tipos de tubulações pipe-in-pipe ditas compliant e non-
compliant: no primeiro tipo são presentes conexões entre os tubos interno e externo em
intervalos freqüentes de comprimento e nesse caso a transferência de carregamentos é bem
distribuída implicando uma expansão uniforme entre as tubulações. Para o segundo caso
as conexões são feitas somente nas extremidades da tubulação ou espaçadas com distâncias

23

da ordem de grandeza de quilômetros. Em ambos os casos são empregados centralizadores
para manter a concentricidade entre os tubos e prevenir contatos, esses são colocados na
tubulação com espaços de 1-3 metros. Para uma classificação mais detalhada dos tipos de
tubulações pipe-in-pipe e dos tipos de isolantes geralmente utilizados veja (HAUSNER;
DIXON, 2002).

A principal razão para o emprego de tubulações pipe-in-pipe é o isolamento térmico
pois, com a necessidade de instalações offshore cada vez mais profundas, a perda de calor do
fluido tem um papel relevante pois essa é acompanhada de um aumento na sua viscosidade
que acarreta a necessidade de maiores pressões para garantir seu escoamento. Esse quadro
se traduz na necessidade de estruturas mais robustas. Portanto um isolamento térmico
adequado pode levar a um menor custo dos risers pela necessidade de menor quantidade
de materiais devido a necessidade de menor resistência, bem como maiores profundidades
de exploração.

Claramente, dada a esbeltez da estrutura, grande peso próprio e grandes pressões
hidrostáticas, outro importante critério de falha a ser levado em consideração é a flambagem.
No presente trabalho esse critério não será tratado já que extensamente presente na
literatura, por exemplo veja (KYRIAKIDES, 2002) e (KYRIAKIDES; VOGLER, 2002).

Neste projeto, pretende-se entender a relação complexa entre os fenômenos solici-
tantes descritos, delimitar a importância relativa de cada um para o estado de tensões
resultante e desenvolver um método robusto que aborde o problema da forma mais com-
pleta possível. Os fenômenos considerados são os carregamentos de correnteza, de peso
próprio imerso, de pressões interna e externa e de gradientes de temperatura, todos sob
uma ótica estática. A abordagem dinâmica foi preterida pela maior preocupação do projeto
em tratar de maneira concisa e direta os efeitos em termos de tensões equivalentes finais.
Essas derivam principalmente dos efeitos estáticos mencionados.

25

2 Revisão da Literatura

Neste capítulo pretende-se fazer uma coleta de ferramentas e conceitos para fa-
miliarizar o leitor com o contexto no qual o trabalho será desenvolvido. Nos anexos são
presentes alguns instrumentos que serão utilizados no texto e que também podem auxiliar
uma leitura mais linear.

O problema estrutural, sob hipótese de pequenas deformações e deslocamentos,
se resume matematicamente à solução da equação de Navier (A.34) acompanhada de
condições de contorno. Para a solução dessa equação vetorial serão usados métodos da
teoria geral de equações lineares à derivadas parciais que, além de permitir uma grande
abrangência quanto às aplicações, é também ideal para a discretização e aproximação
numérica, sendo essa última uma etapa fundamental dada a complexidade das equações e
ausência de soluções analíticas. Nesse sentido se farão necessários alguns instrumentos de
análise funcional que são descritos brevemente no anexo B.

2.1 Enquadramento na teoria geral das EDPs

A equação de Navier (A.34) associada às suas condições de contorno é uma equação
linear a derivadas parciais de segunda ordem elíptica. Essa classe de equações é muito
abrangente1 e seu estudo é feito através da chamada formulação fraca ou variacional a
qual se baseia em uma série de resultados da análise funcional.

A ideia por trás desse tipo de formulação é a de enquadrar uma classe de funções
que seja coerente com o problema em questão e identificar univocamente, dentro dessa
classe, a função que corresponde à solução do problema. O problema é identificar a classe
que dê a coerência ao problema e que forneça contemporaneamente a existência de uma
única solução.

No caso em questão, a incógnita é o campo de deslocamento ~u. Pode-se intuir que
a classe de funções que se procura deve ser tal que suas funções satisfaçam as condições de
contorno do problema e que sejam, por exemplo, contínuas já que uma descontinuidade no
campo de deslocamentos seria equivalente a uma fratura do material. Ao mesmo tempo,
os espaços funcionais utilizados devem também possuir determinadas características para
poder fruir de propriedades desejáveis que serão destacadas no decorrer do texto.

O estudo do problema estrutural é inclusive muito instrutivo para o entendimento
da formulação fraca pois, como será visto, essa corresponde ao princípio do trabalho virtual
1 Equações estacionárias como a de difusão e convecção de temperatura ou difusão de poluentes também

pertencem a essa classe.

26 Capítulo 2. Revisão da Literatura

que por sua vez corresponde ao princípio da mínima energia potencial. Em outras palavras,
o campo de deslocamentos procurado é aquele que minimiza a energia potencial total do
sistema (note que essa inclui o trabalho realizado pelos carregamentos externos).

Na presente seção será desenvolvida a formulação fraca de modo usual sem atribuir
no entanto significado físico ao procedimento que é puramente matemático. No fim da seção
será feita a demonstração da equivalência com o princípio da mínima energia potencial
total. Lembre-se que esta etapa se refere ao problema geral (não necessariamente o tratado
no projeto) para situações onde são válidas as hipóteses de elasticidade-linear, pequenos
deslocamentos e deformações e isotropia. Sucessivamente será necessária a introdução
de novos desenvolvimentos pois a etapa global do problema não pode ser avaliada em
pequenos deslocamentos.

2.1.1 A formulação variacional do problema geral

Considere um corpo de domínio genérico Ω submetido à ação de um campo de
força de volume ~b : Ω → R3 e de um campo de força de superfície s : ΓN → R3 com a
fronteira do domínio ∂Ω = ΓN

⋃ΓD tal que ΓN
⋂ΓD = ∅. Considere ainda, sem perda de

generalidade2 que em ΓD vale ~u = ~0 e dessa maneira o domínio é dividido em uma porção
em que é engastado (ΓD) e outra onde são impostos esforços.

A formulação fraca leva o problema que é funcional vetorial para um ambiente escalar
através do uso de um operador linear3, que no presente caso corresponde à multiplicação por
uma função teste v (que pertence ao espaço funcional coerente mencionado anteriormente
e que definiremos mais tarde) e integração no domínio. Em outras palavras partindo da
equação (A.6) se obtém:

∫
Ω div(T(~x)).~v(~x) +~b(~x).~v(~x)dV (~x) = 0 ∀~v ∈ coerente

T(~x).~n = ~s(~x) ∀~x ∈ ΓN
~v(~x) = ~0 ∀~x ∈ ΓD

(2.1)

Na sequência, usa-se a fórmula de integração por partes, também conhecida como
fórmula de Green, que é um dos pilares da formulação fraca pois descarrega a derivada à
função teste:∫

Ω
div(T(~x)).~v(~x)dV (~x) = −

∫
Ω

T(~x) : ∇~v(~x)dV (~x) +
∫
∂Ω

T(~x)).~n.~v(~x)dA(~x) (2.2)

Note que T : C = ∑
i,j TijCij, que a função teste deve satisfazer a terceira equação

de (2.1) e que o segundo termo a direita de (2.2) tem uma parte coincidente com a segunda
2 É possível introduzir um campo, dito de relevo, ~R que assume exatamente os valores de ~u em ΓD e

resolver o problema para uma função ~u∗ = ~u− ~R conduzindo o problema à formulação anterior com
um termo adicional à direita.

3 Ver anexo B.

2.1. Enquadramento na teoria geral das EDPs 27

equação de (2.1), obtém-se:∫
Ω

T(~x) : ∇~v(~x)dV (~x) =
∫

Ω
~b(~x).~v(~x)dV (~x) +

∫
ΓN
~s(~x)).~v(~x)dA(~x) ∀~v ∈ coerente

Substituindo a lei de Hooke (A.27) e notando que:

• T : ∇~v = T : E(~v) 4

• Tr(E(~u))I : ∇~v = Tr(E(~u))Tr(E(~v))

Obtém-se:
a(~u,~v) = F (~v) ∀~v ∈ coerente

Com:

a(~u,~v) =
∫

Ω
[2µE(~u) : E(~v) + λTr(E(~u))Tr(E(~v))] dV (~x) (2.3a)

F (~v) =
∫

Ω
~b.~vdV (~x) +

∫
∂Ω
~s.~vdA(~x) (2.3b)

Cabe neste ponto introduzir uma discussão breve do espaço de funções coerentes
nomeado anteriormente: a formulação variacional corresponde a um aumento da classe
de funções ditas clássicas que seriam aquelas que são deriváveis ao menos duas vezes em
sentido clássico (visto que o problema é de segunda ordem) e que satisfazem as condições
de contorno pontualmente. Esse aumento corresponde ao espaço funcional H1(Ω;R3) ou a
subespaços desse que são espaços de Sobolev5. Para o entendimento da estrutura desse tipo
de espaço é necessário um conhecimento consistente de instrumentos da análise funcional e
alguns instrumentos de análise real, veja, por exemplo, (RUDIN, 1991) e (KOLMOGOROV;
FOMIN, 1970).

Daqui em diante os instrumentos intrínsecos relacionados aos espaços de Banach,
Hilbert e Sobolev serão considerados familiares ao leitor pois o tratamento desses temas
foge ao escopo do presente texto. Uma descrição dos elementos essenciais é encontrada no
anexo B. Para o leitor interessado ver (SALSA, 2010).

Enfim pode-se concluir que a formulação variacional do problema estrutural genérico
(na ausência de dilatações térmicas) é:

Encontrar a função ~u ∈ H1
ΓD(Ω;R3) tal que

a(~u,~v) = F (~v) ∀~v ∈ H1
ΓD(Ω;R3) (2.4)

4 ∇v = E(~v) + 1
2

{
∇~v −∇~vT

}
e o segundo termo à direita é anti-simétrico e portanto se anula quando

é calculado um produto escalar com um tensor simétrico.
5 Ver anexo B.

28 Capítulo 2. Revisão da Literatura

Tendo posto H1
ΓD(Ω;R3) = {~u ∈ H1(Ω;R3) t.q. ~u = 0 em ΓD}.

Para o leitor que não tem familiaridade com a análise funcional, o entendimento
dessa etapa pode ser comprometido e esse tipo de descrição pode parecer supérfluo, no
entanto esse tipo de formulação facilita muito a etapa de aproximação numérica, pois
conduz a resolução de um sistema linear, como veremos adiante.

2.1.2 A formulação variacional como princípio do trabalho virtual

Como dito anteriormente a formulação variacional ou fraca corresponde ao princípio
ou teorema do trabalho virtual que vem enunciado a seguir:

Teorema 2.1. (Trabalho Virtual) Dado um campo qualquer de deslocamento ~v congru-
ente e cinematicamente admissível, ou seja, que obedece às mesmas condições de contorno
na parcela de fronteira ΓD que as do problema relacionado, então o trabalho interno Wi

feito pelas tensões internas estaticamente admissíveis (que sejam conforme a A.6) sob
tal campo de deslocamento, iguala o trabalho externo We feito pelos campos de força de
volume e de superfície, respectivamente ~b e ~s. Ou seja:
∫

Ω

3∑
i,j=1

(σijε∗ij)dV (~x) =
∫

Ω

3∑
i=1

(bivi)dV (~x)+
∫

ΓN

3∑
i=1

(sivi)dA(~x) ∀~v ∈ congruente (2.5)

Com ε∗ij = 1
2

{
∂vi
∂xj

+ ∂vj
∂xi

}
quando é válida a hipótese de pequenos deslocamentos.

A equivalência da formulação fraca com o PTV é quase imediata, basta notar que
a formulação fraca é o PTV com a substituição da lei de Hooke (A.27) e que o espaço das
funções congruentes é exatamente H1

ΓD(Ω;R3). O PTV é um importante instrumento não
só no âmbito da formulação fraca de um problema mas também no estudo de problemas
hiperestáticos pois permite o cálculo de reações e deslocamentos incógnitos através da
imposição de deslocamentos virtuais em pontos oportunamente colocados.

Pode-se ainda demonstrar a equivalência da formulação fraca com o princípio da
mínima energia potencial total (EPT). Seja portanto o caso especial onde são válidas as
hipóteses de elasticidade-linear, pequenas deformações e isotropia (ver seção A.3.1) a EPT
total é dada pela expressão:

EPT (~v) = 1
2

∫
Ω

[
2µ|E(~v)|2 + λ(Tr(E(~v)))2

]
dV (~x)−

∫
Ω
~b.~vdV (~x)−

∫
∂Ω
~s.~vdA(~x) (2.6)

Ou seja:
EPT (~v) = 1

2a(~v,~v)− F (~v) (2.7)

E sendo a(., .) uma forma bilinear, contínua e simétrica (a(~u,~v) = a(~v, ~u)) e F (.)
um operador linear vale o seguinte:

2.1. Enquadramento na teoria geral das EDPs 29

Teorema 2.2. (Energia Potencial Mínima) A formulação fraca ou variacional (2.4)
é equivalente à:

EPT (~u) = min
~v∈H1

ΓD
(Ω;R3)

EPT (~v) (2.8)

Demonstração: ∀ε ∈ R e ∀~v ∈ H1
ΓD(Ω;R3) tem-se:

EPT (~u+ ε~v)− EPT (~u) = 1
2{a(~u+ ε~v, ~u+ ε~v)− a(~u,~v)} − F (~u+ ε~v) + F (~u)

= ε{a(~u,~v)− F (~v)}+ 1
2ε

2a(~v,~v),

Então se ~u é solução de (2.4), tem-se que a(~u,~v)− F (~v) = 0, portanto:

EPT (~u+ ε~v)− EPT (~u) = 1
2ε

2a(~v,~v) ≥ 0

Assim ~u minimiza a EPT (EPT (~u) ≤ EPT (~u+ ε~v)). Por outro lado, se ~u minimiza
a EPT, tem-se que EPT (~u) ≤ EPT (~u+ ε~v), e portanto:

ε{a(~u,~v)− F (~v)}+ 1
2ε

2a(~v,~v) ≥ 0

Mas essa inequação força o anulamento do termo que multiplica ε porque sendo ε
genérico pode-se tomar o limite para ε tendendo a zero à esquerda (limε→0−) ou o limite
de ε tendendo a zero pela direita (limε→0+) e em ambos os casos a magnitude do primeiro
termo domina a do segundo termo e como deve ser maior ou igual a zero para ambos os
limites de ε então se conclui a afirmação, i.é. a (2.4). ♦

2.1.3 Questões de existência e unicidade

Antes de qualquer procedimento de cálculo e de resolução de equações a derivadas
parciais, deve-se meditar sobre a existência e unicidade de uma solução pois nem sempre
equações a derivadas parciais possuem soluções e nem sempre essas são únicas. Nesse
caso um procedimento de solução numérica pode dar resultados não coerentes; por isso,
teoremas de unicidade e existência não são uma simples formalidade matemática, mas
uma pré-avaliação da consistência de um modelo matemático que é essencial para etapas
numéricas. Por mais que um modelo matemático seja coerente e fiel à realidade, a existência
de uma solução experimental não comporta a existência de uma solução para o modelo
matemático. Por isso cabe ao engenheiro investigar a resolubilidade das equações.

Para as equações a derivadas parciais lineares os teoremas principais que regulam
a existência e unicidade de uma solução são: teorema de Riez, teorema de Lax-Milgran
e alternativa de Fredholm. Para problemas não lineares, são necessários teoremas mais
sofisticados como teorema do ponto fixo e os teoremas de Shauder.

30 Capítulo 2. Revisão da Literatura

No caso em questão será suficiente o uso do teorema de Riez (quando ΓD 6= ∅)
pois, como se virá a compreender, a forma bilinear a(., .) é contínua, coerciva e simétrica
e portanto induz um produto interno ou escalar no espaço funcional H1

ΓD(Ω;R3). Para
o caso ΓD = ∅ a situação é mais complicada pois a solução não é única (se ~u0 é solução
então qualquer sobreposição de movimento rígido do corpo ~u0 + ~v também é solução) e
nesse caso deve-se selecionar a solução mais adequada. Um exemplo relevante dessa etapa
é como a simplificação do modelo a um problema plano 2D, por exemplo axissimétrico,
pode levar à ausência de engastamentos e a fronteira do domínio, nesse caso, é descrita
inteiramente por condições ditas de Neumann, i.é. (ΓN = ∂Ω). Na realidade, qualquer
uma das soluções possíveis é suficiente para a análise estrutural pois os critérios de falha,
geralmente, não consideram o campo de deslocamentos mas sim o estado tensorial e esse
último é unicamente determinado pois movimentos rígidos ~v possuem tensor deformação
E nulo e portanto para todas as soluções do tipo ~u0 + ~v os estados de deformação e
consequentemente de tensão, são os mesmos.

Os problemas estruturais são um ótimo ambiente para estudar unicidade e existência
pois os teoremas abstratos mencionados frequentemente levam a conclusões de grande
interesse físico e muitas vezes intuitivos: por exemplo, usando a alternativa de Fredholm
para um problema com ΓD = ∅, conclui-se que um problema estático é solúvel somente se
as forças externas são auto-equilibradas.

2.2 Aproximação numérica pelo método de Galerkin
Antes de prosseguir para o método propriamente dito cabe uma discussão sobre

métodos de aproximação numérica. Uma maneira de se desenvolver uma intuição sobre o
método dos elementos finitos (FEM) é entender antes a ideia do método de Rayleigh-Ritz
(RR). Uma descrição didática e breve do tema pode ser encontrada em (CORIGLIANO;
TALIERCIO, 2005). Para uma descrição mais completa e consagrada veja (BATH, 1996).

2.2.1 O método de Rayleigh-Ritz e introdução ao método dos elementos
finitos

A idéia do método RR é tomar a equação da energia potencial total do problema e
introduzir um modelo simplificado de deslocamentos que seja coerente com as condições
ditas essenciais (ΓD). Em seguida o modelo de deslocamentos é substituído na equação da
energia potencial (2.6) e é imposta a estacionariedade igualando as derivadas em relação a
cada um dos coeficientes a zero. Esse procedimento conduz a um sistema linear de ordem
n onde n é o número de parâmetros incógnitos.

Exemplo ilustrativo Seja um problema plano onde o domínio (Ω) coincide com
um quadrado de vértices em (1 : (0, 0), 2 : (1, 0), 3 : (1, 1), 4 : (0, 1)), o lado esquerdo

2.2. Aproximação numérica pelo método de Galerkin 31

é engastado e sobre o lado superior age um carregamento uniformemente distribuído
p, direção vertical e sentido contrário ao do eixo y (veja a figura 3). Introduz-se, como
modelo cinemático, um polinômio de segundo grau, que em 2D seria do tipo: ux(x, y) =
c1 + c2x + c3y + c4xy + c5x

2 + c6y
2 e uy(x, y) = c7 + c8x + c9y + c10xy + c11x

2 + c12y
2,

ou seja, é feita uma discretização com 12 graus de liberdade. Esses graus de liberdade
serão reduzidos pelo fato de que o modelo deve satisfazer as condições de contorno
em ΓD: ux(0, y) = c1 + c3y + c6y

2 = 0 e uy(0, y) = c7 + c9y + c12y
2 = 0 ∀y. Logo

c1 = c3 = c6 = c7 = c9 = c12 = 0.

Figura 3: Exemplo ilustrativo.

Portanto o modelo congruente final a ser substituído na equação da energia potencial
(2.6) é ~u = [ux, uy, 0] com ux(x, y) = c2x+ c4xy + c5x

2 e uy(x, y) = c8x+ c10xy + c11x
2 i.é

um modelo de 6 graus de liberdade.

Finalmente o modelo é substituído na expressão da EPT (2.6) e são impostas
as equações de estacionariedade ∂EPT (~u)

∂ci
= 0 i = 2, 4, 5, 8, 10, 11 que conduzem a um

sistema linear de sexto grau com incógnitas c2, c4, c5, c8, c10, c11. Uma vez resolvido o
sistema, o campo de deslocamentos fica determinado e, consequentemente, via equações
de congruência e de compatibilidade, obtêm-se as tensões. São omitidos os cálculos pois
essa etapa é puramente ilustrativa.

O método dos elementos finitos é similar ao método RR porém possui três grandes
vantagens:

i No método dos elementos finitos, os parâmetros do modelo cinemático são as próprias
deslocamentos em pontos colocados no domínio, ditos nós;

ii No método dos elementos finitos pode-se refinar o modelo cinemático aumentando o
grau dos polinômios usados ou aumentando o número de elementos disponíveis;

iii O método dos elementos finitos é facilmente automatizável;

32 Capítulo 2. Revisão da Literatura

Observe que o fato de atribuir deslocamentos em nós como parâmetros do modelo
implica restrições quanto ao campo de deslocamentos: o tipo de forma e a quantidade de
nós dos elementos ditam o grau do polinômio usado, veja o exemplo:

No caso anterior, faça-se uma discretização com um único elemento finito quadrado
e como parâmetros do modelo cinemático as deslocamentos nos vértices do domínio. Para
obter um modelo onde os parâmetros indiquem exatamente as deslocamentos em cada
nó deve-se definir as funções de forma dos nós. Por exemplo, a função de forma do nó 3
deve ser Φ3(x, y) tal que Φ3(0, 0) = 0, Φ3(0, 1) = 0, Φ3(1, 0) = 0 e Φ3(1, 1) = 1. Tomando
Φ3(x, y) = c1 +c2x+c3y+c4xy, a imposição das equações anteriores fornece: Φ3(x, y) = xy.
Analogamente encontram-se as equações de Φ1(x, y), Φ2(x, y) e Φ4(x, y). Com essas o
modelo cinemático a ser substituído na expressão da EPT (2.6) é ~u = [ux, uy, 0] com:

ux(x, y) = ux1Φ1(x, y) + ux2Φ2(x, y) + ux3Φ3(x, y) + ux4Φ4(x, y)

uy(x, y) = uy1Φ1(x, y) + uy2Φ2(x, y) + uy3Φ3(x, y) + uy4Φ4(x, y)

Uma segunda possibilidade seria a de discretizar o domínio com dois elementos
finitos triangulares: elemento 1 delimitado pelos vértices 1, 2, 4 do domínio, com referência
local 1l, 2l, 3l respectivamente, e elemento 2 delimitado pelos vértices 3, 4, 2 com referência
local 1l, 2l, 3l respectivamente (veja a figura 4). Nesse caso as funções de forma serão do
tipo Φi(xl, yl) = c1 + c2xl + c3yl e para cada um dos elementos o modelo cinemático é
descrito em relação aos graus de liberdade locais:

ueix (xl, yl) = u
(x,l)
1 Φ1(xl, yl) + u

(x,l)
2 Φ2(xl, yl) + u

(x,l)
3 Φ3(xl, yl) i = 1, 2

ueiy (xl, yl) = u
(y,l)
1 Φ1(xl, yl) + u

(y,l)
2 Φ2(xl, yl) + u

(y,l)
3 Φ3(xl, yl) i = 1, 2

Figura 4: Exemplo ilustrativo segunda discretização.

Após a etapa de integração no domínio, cada elemento possui uma correspondente
matriz de rigidez Ke e a equação da energia potencial, após a discretização decorrente do

2.2. Aproximação numérica pelo método de Galerkin 33

modelo assume a forma:

EPT (~u) =
ne∑
e=1

~UT
e Ke

~Ue − ~Fe.~Ue (2.11)

Com ne sendo o número de elementos, que no caso é 2, e ~Ue = [ul,x1 , ul,x2 , ul,x3 , ul,y1 , u
l,y
2 , u

l,y
3]T

o vetor de incógnitas em coordenadas locais.

Em seguida, o modelo cinemático passa por uma etapa de “montagem” onde todos
os graus de liberdade locais são escritos todos em função dos graus de liberdade globais e
desta maneira, são suprimidos graus de liberdade redundantes (como os graus de liberdade
3l do elemento 1 e 2l do elemento 2 no exemplo anterior). Essa “montagem” pode ser feita
com o auxílio de um mapa de conectividade6 (modo mais vantajoso numericamente) ou
simplesmente com o auxílio de matrizes de conectividade que são matrizes esparsas Le

que fornecem a relação ~Ue = Le
~U , sendo ~U o vetor de todas as coordenadas globais.

Após essa última operação a EPT assume finalmente sua configuração final:

EPT (~u) = ~UTK~U − ~F .~U (2.12)

Onde a matriz K é a matriz de rigidez (quadrada e de ordem n) e n é o número total
de graus de liberdade do domínio discretizado (incluindo os graus de liberdade colocados
na fronteira ΓD) que, no caso do exemplo anterior, são 8. Impondo estacionariedade em
relação aos graus de liberdade se chega ao sistema linear:

K~U = ~F (2.13)

A última observação é que a matriz K é singular e o sistema não é solúvel porque
contém os graus de liberdade da fronteira ΓD. Para a resolução a 2.13 é rescrita colocando
por último todos os graus de liberdade de K correspondentes aos nós colocados em ΓD
(no exemplo anterior são os nós 1 e 4) e esse re-ordenamento resulta na segunte:

 KΩΩ KΩΓD

KΩΓD KΓDΓD

 ~UΩ
~UΓD

 =
 ~FΩ
~FΓD

 (2.14)

Pelo fato de que ~UΓD é conhecido, pode-se remanejar o sistema e chegar a:

KΩΩ~UΩ = ~FΩ −KΩΓD
~UΓD (2.15)

Que não é um sistema singular.

6 Esse mapa armazena a correspondência em coordenadas globais de todas as coordenadas locais.

34 Capítulo 2. Revisão da Literatura

2.2.2 O método de Galerkin

O método de Galerkin é uma generalização da aplicação do método dos elementos
finitos a formulações fracas de equações elípticas que não levem a uma forma bilinear
simétrica. Em última análise, isto significa que a formulação variacional não equivale ao
problema de mínimo de um funcional. Por exemplo, pode-se considerar a equação de
difusão e convecção de temperatura estacionária: (∆T (~x) +~b.∇T (~x) = 0 ∀~x ∈ Ω) que,
quando conduzida à formulação fraca, gera um adendo a esquerda uma forma bilinear não
simétrica.

Considera-se, então, a forma bilinear genérica a(., .), não necessariamente simétrica,
e a formulação fraca geral:

Encontrar u ∈ H1
ΓD(Ω) tal que: a(u, v) = F (v) ∀v ∈ H1

ΓD(Ω).

Com F (.) um funcional sobre V .

O espaço H1
ΓD(Ω) é infinito dimensional e o método de Galerkin é uma espécie

de projeção7 da solução em um espaço finito dimensional. Assim, tendo uma família de
espaços finito dimensionais Vh ⊂ V = H1

ΓD(Ω) que possuam a propriedade de saturação
em relação a V 8, onde h é um parâmetro positivo que dita a dimensão do espaço, encontro
a solução aproximada uh ∈ Vh que se “aproxima” ao máximo da solução u ∈ V respeitando
a equação da formulação fraca. Portanto o método de Galerkin corresponde à seguinte
formulação:

Teorema 2.3 (Método de Galerkin). Encontrar uh ∈ Vh tal que:

a(uh, vh) = F (vh) ∀vh ∈ Vh (2.16)

No âmbito dos elementos finitos para o caso Lagrangeano, será definido o espaço Vh,
dito dos elementos finitos. Seja portanto o domínio discretizado em elementos geométricos
Ki, i = 1, . . . , ne (no caso 2D, triângulos ou quadriláteros, e 3D, tetraedros ou hexaedros,
etc.) e seja Pr(Ki) o espaço dos polinômios de grau menor ou igual a r definido sobre o
elemento genérico Ki. A família dos elementos ditos lagrangeanos ({ψj(~x)}j=1,...,nn) é tal
que representa uma base de Pr(Ki) para a qual cada polinômio seu assume valor unitário
em um determinado nó do elemento e valor nulo para os nós restantes. Portanto, sendo
{~αj}j=1,...,nn a família de coordenadas do genérico nó j, tem-se que ψj(~αi) = δij . Note que,
como os polinômios lagrangeanos devem interpolar nn nós, esses terão grau dependente
do número de nós nn e da dimensão do elemento (1D, 2D, etc.). A base lagrangeana é
também dita família das funções de forma.
7 Tecnicamente, para poder caracterizar uma projeção, a(., .) deve induzir um produto interno em

H1
ΓD

(Ω) pois nesse caso o problema seria equivalente a encontrar o elemento uh no espaço finito
dimensional que minimiza a distância em relação a u ∈ H1

ΓD
(Ω).

8 Isto significa que infh→0,uh∈Vh
||uh − u||V → 0, i.é. que com o refinamento da malha, o espaço Vh

finito dimensional tende a ocupar todo V .

2.2. Aproximação numérica pelo método de Galerkin 35

Seja por último Th = ∪i=1,...,neKi o conjunto dos elementos, pode-se definir o espaço
dos elementos finitos como:

Vh = Xr
h =

{
vh ∈ C0(Ω) : vh|Ki ∈ Pr(Ki), ∀Ki ∈ Th

}
(2.17)

Com h = maxKi∈Th hKi e hKi = sup~x,~y∈Ki |~x− ~y|.

Uma base natural para o espaço 2.17 é a família {φ}ngli=1 onde φi = ∑ne
k=1 ψk é a

soma das funções de forma associadas ao i-ésimo grau de liberdade. Tais funções serão em
número iguais ao número de elementos ao qual tal grau de liberdade pertence (ne). Desta
forma qualquer função de Vh pode ser escrita como vh = ∑ngl

i=1 Viφ
′
i, tendo-se numerado

oportunamente, de 1 a ngl, os graus de liberdade do problema. Dessa maneira, os valores
do vetor ~V são exatamente os valores da incógnita no nó correspondente.

Escrevendo portanto uh como acima e impondo a validade de 2.16 para todas
funções de forma do espaço, pode-se obter o seguinte sistema de equações:

ngl∑
j=1

Uja(φj, φi) = F (φi) ∀i = 1, . . . , ngl (2.18)

Toda função φj assume valor nulo fora dos elementos aos quais o nó j pertence e
portanto a matriz de rigidez Kij = a(φj, φi) é esparsa. É fácil demonstrar que tal matriz é
simétrica se a forma bilinear é simétrica e que é definida positiva se a forma bilinear é
coerciva (ver p.ex. (QUARTERONI, 2008)).

Uma última observação em relação a etapa de integração: normalmente é definido
um elemento de referência K̂ e para todo elemento Ki ∈ Th é definida uma função Φi

tal que Ki = Φi(K̂) (veja a figura 5). Isso é feito para dinamizar a etapa de integração
numérica usando a seguinte identidade:∫

Ki
f(x)dx =

∫
K̂
f ◦ Φi(ξ)|J(Φi(ξ))|dξ (2.19)

Onde J(Φi(ξ)) é o Jacobiano da transformação Φi(ξ).

Figura 5: Mapa do elemento de referência ao elemento da malha.

36 Capítulo 2. Revisão da Literatura

2.3 O método de Newton para solução de sistemas não lineares
O método de Newton é um dos métodos numéricos mais conhecidos para a solução

de sistemas não lineares. No caso discreto, o sistema de n equações não lineares em n

incógnitas pode ser escrito da seguinte maneira: seja ~F (~u) : Rn → Rn tal que todos os
termos presentes estão do lado esquerdo, i.é, de modo que seja válida ~F (~u) = ~0. O método
de Newton se escreve:

Dada uma aproximação inicial ~u0, resolve-se iterativamente a 2.20 enquanto k <
MAXIT e ||~r(~uk)||Rn > Tol.

∇~F (~uk). ~δu = −~F (~uk) (2.20a)

~uk+1 = ~uk + ~δu (2.20b)

Onde Tol é uma tolerância9 pré-estabelecida, MAXIT um limite para o número
de iterações e ||~F (~uk)||Rn uma norma no espaço Rn.

Note-se que (∇~F (~uk))ij = ∂Fi
∂uj

(~uk) é o Jacobiano da função e pode-se afirmar
que caso esse seja não singular (det(∇~F (~uk)) 6= 0) existe uma vizinhança da solução do
problema, ~u, para a qual a convergência é quadrática, i.é.:

||~u− ~uk||Rn ≤ C||~u− ~uk−1||2Rn (2.21)

Com C uma constante que dependerá de uma série de parâmetros do problema.

O método de Newton para o caso discreto pode ser estendido para o caso contínuo
da seguinte forma:

Sejam u ∈ V e T ∈ Q duas funções que satisfazem um sistema de equações
diferenciais não lineares L(u, T) = 0 e denotando por DL(uk,Tk)(δu, δT) a derivada de
Gâteaux10 avaliada no ponto (uk, Tk) na direção (δu, δT), o método de Newton se escreve:

Dada uma aproximação inicial (u0, T0) ∈ V ×Q, resolve-se iterativamente a 2.22
enquanto k < MAXIT e ||(uk+1,Tk+1)−(uk,Tk)||V×Q

||(uk,Tk)||V×Q > Tol.

DL(uk,Tk)(δu, δT) = −L(uk, Tk) (2.22a)

 uk+1

Tk+1

 =
 uk

Tk

+
 δu

δT

 (2.22b)

É importante notar que a 2.22a é um sistema de equações a derivadas parciais
lineares e para a sua resolução são usados métodos de aproximação como o usado na seção
2.2.2.
9 Muitas vezes é conveniente estabelecer uma tolerância para o resíduo relativo pois é um modo de

normalizar a convergência, por exemplo: ||rk|| = ||(~uk)−(~uk−1)||Rn

||(~uk−1)||Rn
.

10 Veja a seção B.3 na página 114 no anexo B.

2.4. O problema: análise global 37

2.4 O problema: análise global

Nesta seção, serão introduzidos alguns conceitos e discussões para o caso do pro-
blema da análise global. Nesta etapa algumas das não-linearidades do problema serão
evidenciadas. A formulação geral discutida anteriormente não será válida pois foi desenvol-
vida nas hipóteses de carregamentos e relação de congruência lineares.

Numa segunda etapa, denominada “local”, as hipóteses de linearidade serão reto-
madas e será possível fruir dos resultados até aqui desenvolvidos.

Como dito anteriormente, a esbeltez da tubulação considerada determina a pequena
relevância da sua resistência à flexão e por isso essas estruturas podem ser analisadas
globalmente como cabos flexíveis. Matematicamente isso significa que as equações que
regem o comportamento estrutural são as de catenária (cabos flexíveis).

As equações da estática da catenária derivam de uma formulação de equilíbrio
diferencial geometricamente muito simples (veja, p.ex., (IRVINE, 1981)). Nesse caso o
único esforço solicitante considerado é a tração na seção transversal já que a estrutura é
considerada flexível. Na figura 6 pode-se observar a situação que se procura descrever.

Figura 6: Cabo flexível deformado.

Fonte: (SANTOS; ALMEIDA, 2011)

38 Capítulo 2. Revisão da Literatura

2.4.1 Equações de equilíbrio

Sendo s a coordenada lagrangeana, H e V as forças horizontal e vertical internas do
cabo, componentes da normal N que é o único esforço solicitante, as equações de equilíbrio
de força e momento fornecem:

dH(s)
ds = −fx(s) (2.23a)

dV (s)
ds = −fy(s) (2.23b)

H(y + v)− V (x+ u) +
∫ s

0
fx(y(s) + v(s))ds−

∫ s

0
fy(x(s) + u(s))ds = 0 (2.23c)

Sendo Fx(s) =
∫ s

0 fx(t)dt e Fy(s) =
∫ s

0 fy(t)dt os carregamentos globais impostos na
catenária nos primeiros s metros de comprimento e fx e fy a distribuição de carregamento
nas direções x e y que derivam do peso submerso e da ação da corrente:

fx = 1
2cdDρaV

2
c f(y)(sin(α + θ))2|f(y) sin(α + θ)| (2.24a)

fy = q − 1
2cdDρaV

2
c f(y) sin(α + θ) cos(α + θ)|f(y) sin(α + θ)| (2.24b)

Outra maneira de escrever as 2.24 é:

fx = Cd(f(y))2(sin(α + θ))3sgn(f(y) sin(α + θ)) (2.25a)

fy = q − Cd(f(y))2(sin(α + θ))2 cos(α + θ)sgn(f(y) sin(α + θ)) (2.25b)

Onde “sgn” é a função sinal11, cd é o coeficiente de arrasto do cilindro, D seu
diâmetro, ρa a densidade da água e q o peso submerso da tubulação. Uma outra observação
é que com considerações de caráter físico, se a distribuição da velocidade é monotonicamente
crescente e positiva pode-se afirmar que na configuração estática é lícito desprezar a função
módulo pois os ângulos finais serão compreendidos entre 0 ◦ e 90 ◦ e f(y) será sempre
positiva.

A equação 2.23c pode ser simplificada em sua versão diferencial substituindo as
relações 2.23a e 2.23b:

H(y′0 + v′)− V (x′0 + u′) = 0 (2.26)
11

sgn(f(x)) =

 −1 : f(x) < 0
0 : f(x) = 0
1 : f(x) > 0

2.4. O problema: análise global 39

A relação entre a normal e suas componentes é dada por:

H = N cos(α + θ) (2.27a)

V = N sin(α + θ) (2.27b)

Sendo um cabo, a relação N(s) > 0 vale em todo seu comprimento.

2.4.2 Relações Cinemáticas

Os ângulos da figura 6 podem ser descritos como funções das coordenadas de
referência e deslocamentos conforme se segue:

cos(α + θ) = x′0 + u′√
(x′0 + u′)2 + (y′0 + v′)2

(2.28a)

sin(α + θ) = y′0 + v′√
(x′0 + u′)2 + (y′0 + v′)2

(2.28b)

Introduzindo os espaços funcionais:

U = {(u, v) ∈ H1(Ω)×H1(Ω)|u(s) = u, v(s) = v ∀s ∈ ΓD} (2.29a)

V = {(δu, δv) ∈ H1(Ω)×H1(Ω)|δu(s) = u, δv(s) = v ∀s ∈ ΓD} (2.29b)

Esses espaços são ditos respectivamente cinematicamente admissível e cinematica-
mente homogêneo admissível.

Pelo princípio do trabalho virtual, se (u, v) ∈ U é o campo de deslocamento de
equilíbrio, então para qualquer campo virtual (δu, δv) ∈ V o trabalho virtual interno é
igual ao trabalho virtual externo, i.é.:∫ L

0
Nδε(u, v)ds =

∫ L

0
[fx(s)δu+ fy(s)δv] ds ∀(δu, δv) ∈ V (2.30)

Na equação anterior, substituindo as relações 2.23a e 2.23b, integrando por partes,
usando a relação 2.27 e por fim a relação 2.28:∫ L

0
[fx(s)δu+ fy(s)δv] ds = −

∫ L

0

[
dH
ds δu+ dV

ds δv
]

ds =

=
∫ L

0
H [δu′ + V δv′] ds =

=
∫ L

0
N [cos(α + θ)δu′ +N sin(α + θ)δv′] ds =

=
∫ L

0
N

(x′0 + u′)δu′ + (y′0 + v′)δv′√
(x′0 + u′)2 + (y′0 + v′)2

ds

40 Capítulo 2. Revisão da Literatura

Em outras palavras:

δε(u, v) = (x′0 + u′)δu′ + (y′0 + v′)δv′√
(x′0 + u′)2 + (y′0 + v′)2

(2.31)

Integrando a relação anterior, chega-se na equação diferencial cinemática, que é
exata e não linear:

ε(u, v) =
√

(x′0 + u′)2 + (y′0 + v′)2 − 1 (2.32)

Note que ε deve ser sempre positivo e que as relações cinemáticas obtidas, assim
como as de equilíbrio, são válidas para deslocamentos arbitrariamente grandes.

2.4.3 Relação Constitutiva

Como se sabe, na região elástica, para o caso de deformação uniforme na seção
transversal (sem escorregamento entre as camadas), a densidade de energia potencial de
deformação é dada pela seguinte função convexa:

W (ε) = 1
2EAε

2 (2.33)

Onde EA é a rigidez axial equivalente da seção transversal, dada pela soma de
rigidez das diversas camadas (conforme será visto, a rigidez equivalente do isolante é
praticamente desprezível). Daqui em diante, qualquer menção ao termo EA refere-se à essa
rigidez equivalente. Dessa maneira pode-se definir a densidade de energia complementar
de deformação que, para o caso de densidade de energia potencial de deformação convexa,
pode ser obtida através da seguinte transformação de Legendre:

Wc(N) = Nε−W (ε) (2.34)

Assim:
Wc(N) = 1

2
N2

EA
(2.35)

Ou em outras palavras:
N = EAε (2.36)

2.4.4 Princípio da mínima energia potencial total e simplificações possíveis

A energia potencial total associada ao estado de deformação correspondente ao
campo de deslocamentos (u, v) é o funcional ΠT : U → R dado por:

ΠT (u, v) = U(ε(u, v))− F (u, v) (2.37)

2.4. O problema: análise global 41

Figura 7: Cabo flexível suspenso sob ação de correnteza estática.

Fonte: (PESCE; MARTINS; CHAKRABARTI, 2005)

Onde U é a energia interna de deformação e F o trabalho exercido pelos esforços
externos. Ou seja:

U(ε(u, v)) =
∫ L

0
W (ε)ds = EA

2

∫ L

0
(ε(u, v))2ds (2.38)

F (u, v) =
∫ L

0
[fxu+ fyv] ds (2.39)

A expressão anterior é altamente não linear: substituindo a equação 2.25, com a
notação Cd(y) = 1

2cdDρaV
2
c f(y) e usando a relação 2.28 pode-se obter a seguinte equação:

F (u, v) =
∫ L

0
Cd(y)


(

(y′0 + v′)2

(x′0 + u′)2 + (y′0 + v′)2

) ∣∣∣∣∣∣f(y) y′0 + v′√
(x′0 + u′)2 + (y′0 + v′)2

∣∣∣∣∣∣u+

+
(

(x′0 + u′)(y′0 + v′)
(x′0 + u′)2 + (y′0 + v′)2

) ∣∣∣∣∣∣f(y) y′0 + v′√
(x′0 + u′)2 + (y′0 + v′)2

∣∣∣∣∣∣ v
+ qvds

(2.40)

Outra fonte de não linearidade é a própria relação 2.32.

Pelo princípio da mínima energia potencial total, o(s) equilíbrio(s) do sistema é(são)
dado(s) pelo(s) campo(s) de deslocamento (u, v) ∈ U que configura(m) estacionariedade
do funcional ΠT . Em outras palavras a derivada de Gâteaux12 de primeira ordem definida
12 A derivada de Gâteaux é a generalização do conceito de derivada direcional para o caso de funcionais

i.é. onde as variáveis de diferenciação são funções. Ver a seção B.3 do anexo B na página 114.

42 Capítulo 2. Revisão da Literatura

em (u, v) ∈ U em relação a qualquer “direção” (δu, δv) ∈ V se anula:

δΠT = 0 ∀(δu, δv) ∈ V (2.41)

A real expressão da variação do funcional energia potencial total é:

δΠT =
∫ L

0

[
dW
dε δε− fxδu− uδfx − fyδv − vδfy

]
ds (2.42)

Com:
δfx = dfx(u+ tδu, v + tδv)

dt

∣∣∣∣
t=0

(2.43a)

δfy = dfy(u+ tδu, v + tδv)
dt

∣∣∣∣
t=0

(2.43b)

A expressão acima assume uma forma suficientemente complicada:

δfx = Cd(f(y))2sgn(f(y)(y′0 + v′))

 −3(x′0 + u′)(y′0 + v′)3

((x′0 + u′)2 + (y′0 + v′)2) 5
2
δu′+

+ 3(x′0 + u′)2(y′0 + v′)2

((x′0 + u′)2 + (y′0 + v′)2) 5
2
δv′


(2.44a)

δfy = Cd(f(y))2sgn(f(y)(y′0 + v′))

2(x′0 + u′)2(y′0 + v′)2 − (y′0 + v′)4

((x′0 + u′)2 + (y′0 + v′)2) 5
2

δu′+

+ (x′0 + u′)(y′0 + v′)3 − 2(x′0 + u′)3(y′0 + v′)
((x′0 + u′)2 + (y′0 + v′)2) 5

2
δv′


(2.44b)

Tendo posto Cd = 1
2cdDρaV

2
c .

Assim pode-se escrever a formulação variacional:

Encontar (u, v) ∈ U tal que seja válida a relação:∫ L

0
EA(

√
(x′0 + u′)2 + (y′0 + v′)2 − 1)(x′0 + u′)δu′ + (y′0 + v′)δv′√

(x′0 + u′)2 + (y′0 + v′)2
ds =

=
∫ L

0

Cd(f(y))2sgn(f(y)(y′0 + v′))
((x′0 + u′)2 + (y′0 + v′)2) 5

2

{
(x′0 + u′)2(y′0 + v′)3δu+

+ (y′0 + v′)5δu− 3(x′0 + u′)(y′0 + v′)3uδu′ + 3(x′0 + u′)2(y′0 + v′)2uδv′+

− (x′0 + u′)3(y′0 + v′)2δv − (x′0 + u′)(y′0 + v′)4δv + 2(x′0 + u′)2(y′0 + v′)2vδu′+

− (y′0 + v′)4vδu′ + (x′0 + u′)(y′0 + v′)3vδv′ − 2(x′0 + u′)3(y′0 + v′)vδv′
}

+

+ qδvds ∀(δu, δv) ∈ V

(2.45)

Uma simplificação possível é a de considerar a força que deriva da interação fluido-
estrutura como proporcional à posição inicial da tubulação, simplificação essa que é válida

2.4. O problema: análise global 43

para o caso em que a configuração inicial (não deformada) é muito próxima da configuração
final (deformada) e pode ser eficiente para perfis de corrente f(y)Vc não muito complexos.
Deve-se observar que essa é uma hipótese diferente da de pequenos deslocamentos pois
os deslocamentos podem ser relevantes sem alterar significativamente o perfil geométrico.
Nesse caso valem as equações:

fx = 1
2cdDρaV

2
c f(y)(sin(α))2|f(y) sin(α)| (2.46a)

fy = q − 1
2cdDρaV

2
c f(y) sin(α) cos(α)|f(y) sin(α)| (2.46b)

Com:
cos(α) = x′0√

(x′0)2 + (y′0)2
(2.47a)

sin(α) = y′0√
(x′0)2 + (y′0)2

(2.47b)

A minimização da energia potencial total nesse caso leva ao próprio princípio
do trabalho virtual (δΠT =

∫ L
0 (Nδε − fxδu − fyδv)ds = 0 ∀(δu, δv) ∈ V). Portanto,

conclui-se que o sistema está em equilíbrio se, e somente se, a sua energia potencial total
assume um valor estacionário para qualquer deslocamento cinematicamente admissível, i.é.
∀(δu, δv) ∈ V .

Por último, cabe notar que, para esse último caso, a segunda derivada de Gâteaux
assume a seguinte forma:

δ2ΠT =
∫ L

0

(
d2W

dε2 δ
2ε

)
ds (2.48)

Com:

δ2ε = dδε(u+ tδu, v + tδv)
dt

∣∣∣∣
t=0

= ((y′0 + v′)δu′ − (x′0 + u′)δv′)2

((x′0 + u′)2 + (y′0 + v′)2) 3
2
≥ 0 (2.49)

Sendo a densidade de energia potencial de deformação W (ε) uma função convexa
e sendo δ2ε ≥ 0 pode-se concluir que o funcional ΠT é convexo ∀(u, v) ∈ U e portanto
pode-se demonstrar a existência e unicidade do ponto de mínimo13.

2.4.5 Formulação Dual

Para o caso em que pode-se admitir que as forças externas são independentes dos
deslocamentos u e v, pode-se formular o problema de modo que os esforços sejam as
13 O teorema do método direto do Cálculo das variações garante a existência. Veja (GELFAND; FOMIN,

2000) para detalhes.

44 Capítulo 2. Revisão da Literatura

incógnitas. Para isso tomando as equações 2.37 e 2.34 e adicionando o termo
∫ L
0 u(H ′ +

fx) + v(V ′ + fy)ds (que é nulo) chega-se ao seguinte funcional Lagrangeano:

L(H, V, u, v) =
∫ L

0
[N(H,V)ε(u, v)−Wc(N(H,V))] ds−

−
∫ L

0
[N(H, V)fxu+ fyv] ds+

∫ L

0
[u(H ′ + fx) + v(V ′ + fy)] ds

Integrando por partes:

L(H, V, u, v) =
∫ L

0
[N(H,V)ε(u, v)−Wc(N(H,V))] ds−

∫ L

0
[u′H + v′V] ds

Usando as relações 2.27, 2.28 e 2.32 note que:∫ L

0
[u′H + v′V−N(H, V)ε(u, v)ds =

∫ L

0
N{u′ cosα + θ + v′ sinα + θ − ε(u, v)}ds

=
∫ L

0
N

1 + u′(x′0 + u′) + v′(y′0 + v′)− (x′0 + u′)2 − (y′0 + v′)2√
(x′0 + u′)2 + (y′0 + v′)2

 ds

=
∫ L

0
N

1− x′0(x′0 + u′) + y′0(y′0 + v′)√
(x′0 + u′)2 + (y′0 + v′)2

 ds

=
∫ L

0

[√
H2 + v2 − x′0H − y′0V

]
ds

Assim o Lagrangeano assume a forma da energia complementar total Πc : Us → R:

Πc(H,V) = −Uc(N(H,V))−Gap(H, V) (2.50)

Sendo os funcionais da energia complementar interna e de gap definidos conforme
segue:

Uc(N(H,V)) :=
∫ L

0
Wc(N)ds (2.51a)

Gap(H,V) :=
∫ L

0

√
H2 + V 2 − x′0H − y′0V ds (2.51b)

O espaço funcional Us é o espaço das funções estaticamente admissíveis e Vs o
espaço homogêneo associado, definidos conforme se segue:

Us = {(H, V) ∈ H1(0, L)×H1(0, L) : H ′(s) + fx(s) = 0, V ′(s) + fy(s) = 0 ∀s ∈ (0, L)}
(2.52a)

Vs = {(δH, δV) ∈ H1(0, L)×H1(0, L) : δH ′(s) = 0, δV ′(s) = 0 ∀s ∈ (0, L)} (2.52b)

O ponto de equilíbrio, como se sabe, corresponde ao ponto que torna a energia
complementar total estacionária, i.é. (H,V) é o campo de esforços de equilíbrio se, e
somente se, nesse ponto se anula a primeira variação do funcional:

δΠc((U, V); (δU, δV)) = 0 ∀(δU, δV) ∈ Vs (2.53)

2.4. O problema: análise global 45

Especificando os termos:
∫ L

0

[
−dWc

dN δN(H,V) + x′0δH + y′0δV − δN(H, V)
]

ds = 0 ∀(δU, δV) ∈ Vs (2.54)

Com:

δN(H,V) = dN(H + tδH, V + tδV)
dt

∣∣∣∣
t=0

= HδH + V δV√
H2 + V 2

(2.55)

Analogamente ao que foi feito na seção anterior, analisando a segunda variação da
energia potencial complementar total conclui-se que essa é côncava e, portanto, possui
somente um ponto de máximo:

δ2Πc = −δ2Uc − δ2Gap = −
∫ L

0

1
EA

(HδV − V δH)2

(H2 + V 2) 3
2

ds−
∫ L

0

(HδV − V δH)2

(H2 + V 2) 3
2

ds ≤ 0

(2.56)

A unicidade concluída tanto para o caso da formulação variacional quanto para o
caso da formulação dual é interessante pois como a formulação dual deriva basicamente da
própria formulação variacional pode-se concluir que:

inf
(u,v)∈U

ΠT = sup
(H,V)∈Us

Πc (2.57)

Essa informação ajuda a avaliar a qualidade e eficiência de ambas as abordagens
comparando, após a solução, a energia potencial do sistema, energia que será superestimada
pela abordagem primária e subestimada pela abordagem dual.

47

3 Materiais e métodos

Neste capítulo a primeira parte é dedicada à aplicação dos métodos e das formulações
desenvolvidos no capítulo 2. Em seguida os materiais e instrumentos utilizados no estudo são
brevemente descritos enfatizando as vantagens e potencialidades da abordagem adotada.

3.1 Análise e formulação do problema

No presente texto a análise estrutural é dividida em duas etapas. Na primeira, é
estudado o comportamento global do riser primando pela avaliação dos esforços solicitantes
resultantes e pela forma assumida pela estrutura. Na segunda, é conduzido um estudo
local da relevância dos esforços como pressões interna e externa e efeitos anelásticos que
derivam da difusão de temperatura.

Cabe observar que, na primeira parte, a teoria se refere ao problema global mencio-
nado no capítulo 2 onde discussões e intuições foram desenvolvidas para o problema da
catenária. Na segunda parte, são retomados os conceitos do problema geral discutido no
início do capítulo 2, e no anexo A pois são válidas as hipóteses introduzidas.

Uma consideração importante é que os efeitos axissimétricos, dado que são auto-
equilibrados, não contribuem de maneira decisiva à forma assumida pela tubulação e por
isso são desprezados na análise global. Reciprocamente, tendo em mente que as curvaturas
assumidas pelo riser são de pequena magnitude, pode-se assumir que localmente (em
segmentos de pequenos comprimentos) a geometria continua sendo axissimétrica.

3.1.1 Formulação completa do problema global

Nas seções anteriores foram apresentados alguns conceitos relativos ao problema da
catenária elástica. Nesta seção será considerada uma formulação mais eficiente e compacta
que inclui também as não linearidades do problema. Seja, como visto anteriormente, a
equação de equilíbrio da catenária elástica em forma vetorial:

d
ds

(
N

1 + ε

d~r
ds

)
+ ~f(1 + ε) = 0 (3.1)

Sendo ~r = (x0 + u, y0 + v) = (x, y) e ~f = (fx, fy).

Duas formulações distintas podem ser consideradas, que terão vantagens e desvan-
tagens na etapa numérica.

48 Capítulo 3. Materiais e métodos

3.1.1.1 Formulação fraca clássica

Antes de proceder formalmente à formulação fraca do problema, substitui-se as
relações cinemática 2.32 e constitutiva 2.36 na equação 3.1 obtendo a equação 3.2.

d
ds

EA
(√

x′2 + y′2 − 1
)

√
x′2 + y′2

1 0
0 1

  x′

y′

+
√
x′2 + y′2

 fx(~r, s)
fy(~r, s)

 =
 0

0

 (3.2)

Onde x′ = dx
ds e y′ = dy

ds e conforme visto:

fx(~r, s) = Cd(f(y))2 y′3

(x′2 + y′2) 3
2

sgn(f(y)y′) (3.3a)

fy(~r, s) = q − Cd(f(y))2 x′y′2

(x′2 + y′2) 3
2

sgn(f(y)y′) (3.3b)

A equação 3.2 é não linear e para sua resolução recorre-se ao método de Newton,
que é especificado na seção 2.3 (página 36). Denotando o sistema de equações 3.2 com
L(x, y) = 0 e omitindo os cálculos, a derivada de Gâteaux DL(∆x,∆y)(x, y) de L avaliada
no ponto (x, y) na direção (∆x,∆y) é:

DL(∆x,∆y)(x, y) =
 DL1

(∆x,∆y)(x, y)
DL2

(∆x,∆y)(x, y)

 (3.4)

Com:

DL1
(∆x,∆y)(x, y) = d

ds

EA
(
(x′2 + y′2) 3

2 − y′2
)

(x′2 + y′2) 3
2

∆x′ + EAx′y′

(x′2 + y′2) 3
2

∆y′
+

+ Cdsgn(f(y)y′)

− 2(f(y))2x′y′3

(x′2 + y′2)2 ∆x′ + 2f(y)f ′(y)y′3
(x′2 + y′2) ∆y+

+
(f(y))2

(
3x′2y′2 + y′4

)
(x′2 + y′2)2 ∆y′



(3.5a)

DL2
(∆x,∆y)(x, y) = d

ds

 EAx′y′

(x′2 + y′2) 3
2

∆x′ +
EA

(
(x′2 + y′2) 3

2 − x′2
)

(x′2 + y′2) 3
2

∆y′
+

− Cdsgn(f(y)y′)

(f(y))2
(
− x′2y′2 + y′4

)
(x′2 + y′2)2 ∆x′ + 2f(y)f ′(y)x′y′2

(x′2 + y′2) ∆y+

+ 2(f(y))2x′3y′

(x′2 + y′2)2 ∆y′
+ qx′

(x′2 + y′2) 1
2

∆x′ + qy′

(x′2 + y′2) 1
2

∆y′

(3.5b)

O método de Newton consiste na resolução iterativa (as incógnitas são as funções
(∆x,∆y) a cada iteração) das equações lineares a derivadas parciais dada uma função de
aproximação inicial (x0, y0):

DL(∆x,∆y)(xk, yk) = −L(xk, yk) (3.6a)

3.1. Análise e formulação do problema 49

 xk+1

yk+1

 =
 xk

yk

+
 ∆x

∆y

 (3.6b)

O procedimento iterativo deve continuar até que se satisfaça um critério de conver-
gência ou até que seja atingido um número máximo de iterações pré-estabelecido. Como
se sabe, não é garantida a convergência do método para qualquer valor inicial (x0, y0).
Computacionalmente o procedimento é potencialmente oneroso pois, para cada iteração do
método de Newton, a resolução da equação linear parcial associada conduz a um sistema
linear não simétrico.

Introduzindo uma notação mais compacta que engloba as diversas parcelas referentes
às equações 3.5 e 3.2 e rescrevendo a equação 3.6a tem-se:

d
ds


A11(xk, yk) A12(xk, yk)
A21(xk, yk) A22(xk, yk)

 ∆x′

∆y′

+
B11(xk, yk) B12(xk, yk)
B21(xk, yk) B22(xk, yk)

  ∆x′

∆y′

+

+
0 C12(xk, yk)

0 C22(xk, yk)

 ∆x
∆y

 = −
 L1(xk, yk)
L2(xk, yk)

 (3.7)

Ou em forma vetorial:

d
ds

A(~xk)
d ~∆x
ds

+ B(~xk)
d ~∆x
ds + C(~xk) ~∆x = −L(~xk) (3.8)

Onde:

A11(xk, yk) =
EA

(
(x′2k + y′2k) 3

2 − y′2k
)

(x′2k + y′2k) 3
2

(3.9a)

A12(xk, yk) = A21(xk, yk) = EAx′ky
′
k

(x′2k + y′2k) 3
2

(3.9b)

A22(xk, yk) =
EA

(
(x′2k + y′2k) 3

2 − x′2k
)

(x′2k + y′2k) 3
2

(3.9c)

B11(xk, yk) = −2Cdsgn(f(yk)y′k)
(f(yk))2x′ky

′3
k

(x′2k + y′2k)2 (3.9d)

B12(xk, yk) = Cdsgn(f(yk)y′k)
(f(yk))2

(
3x′2k y′2k + y′4k

)
(x′2k + y′2k)2 (3.9e)

B21(xk, yk) = qx′k

(x′2k + y′2k) 1
2

+ Cdsgn(f(yk)y′k)
(f(yk))2

(
x′2k y

′2
k − y′4k

)
(x′2k + y′2k)2 (3.9f)

B22(xk, yk) = qy′k

(x′2k + y′2k) 1
2
− 2Cdsgn(f(yk)y′k)

(f(yk))2x′3k y
′
k

(x′2k + y′2k)2 (3.9g)

50 Capítulo 3. Materiais e métodos

C11(xk, yk) = C21(xk, yk) = 0 (3.9h)

C12(xk, yk) = 2Cdsgn(f(yk)y′k)
f(yk)f ′(yk)y′3k

(x′2k + y′2k) (3.9i)

C22(xk, yk) = −2Cdsgn(f(yk)y′k)
f(yk)f ′(yk)xky′2k

(x′2k + y′2k) (3.9j)

A formulação fraca ou variacional se obtém multiplicando a equação linearizada
em forma forte 3.8 por uma função (na realidade um campo de funções) test, integrando
e finalmente usando a fórmula de Green para o primeiro adendo. Cabe notar que as
condições de contorno são de Dirichlet no TDP, onde é colocado o sistema de referência
(x(0) = y(0) = 0) e mistas no vínculo com a plataforma onde se tem (y(L) = p e H(L) = 0
) sendo p a profundidade na qual é colocado o TDP. Na realidade, a condição H(L) = 0 é
pouco realista para o caso de uma plataforma de petróleo pois essa tem uma dinâmica
própria e impõe forças ou deslocamentos na extremidade. O estudo acoplado da dinâmica
da plataforma e do cabo vai além do escopo do presente trabalho, para o leitor interessado
veja (MONTANO; RESTELLI; SACCO, 2007).

Sendo portanto os espaços das funções incógnitas e funções teste respectivamente:

U =
{

(∆x(s),∆y(s)) ∈ H1(0, L)×H1(0, L) : ∆x(0) = ∆y(0) = 0 = ∆y(L) = 0
}

(3.10a)

V =
{

(δx(s), δy(s)) ∈ H1(0, L)×H1(0, L) : δx(0) = δy(0) = δy(L) = 0
}

(3.10b)

A formulação fraca do problema não linear e do passo de iteração do método de
Newton é:

Encontrar ~∆x = (∆x,∆y) ∈ U de modo que a seguinte relação seja válida:
∫ L

0

−A(~xk)
d ~∆x
ds

d ~δx
ds + B(~xk)

d ~∆x
ds

~δx+ C(~xk) ~∆x ~δx
 ds = −

∫ L

0
L(~xk) ~δxds ∀ ~δx ∈ V

(3.11)

Cabe observar que o termo a direita também é integrado por partes e por isso
convém distinguir quatro parcelas de L(~xk) que são:

L1
A(xk, yk, Nk) =

EA
(√

x′2k + y′2k − 1
)

√
x′2k + y′2k

x′k (3.12a)

L1
B(xk, yk, Nk) =

√
x′2k + y′2k fx(xk, yk) (3.12b)

L2
A(xk, yk, Nk) =

EA
(√

x′2k + y′2k − 1
)

√
x′2k + y′2k

y′k (3.12c)

3.1. Análise e formulação do problema 51

L2
B(xk, yk, Nk) =

√
x′2k + y′2k fy(xk, yk) (3.12d)

Onde os termos designados com o índice A são integrados por parte e os designados
com B não, ou seja:

−
∫ L

0
L(~xk) ~δxds =

∫ L

0

 L1
A(xk, yk, Nk)
L2
A(xk, yk, Nk)

 δx′

δy′

−
 L1

B(xk, yk, Nk)
L2
B(xk, yk, Nk)

 δx

δy

 ds (3.13)

A equação 3.11 é pronta para a fase de discretização pelo método de Galerkin.

3.1.1.2 A formulação fraca mista

Nesta seção é apresentado um método alternativo para a formulação do problema.
Cabe introduzir uma pequena discussão do porquê dessa nova abordagem:

Note que a formulação fraca 3.11 equivale à imposição em maneira fraca da equação
de equilíbrio. Desta forma, quando se procede à discretização, o resultado aproximado
não satisfaz em todo o domínio a equação de equilíbrio: isso ocorre pois nas fronteiras
dos elementos não é satisfeito o princípio de ação e reação dada a descontinuidade das
deformações (descontinuidade da derivada dos deslocamentos). O que ocorre é que com
o refinamento da malha, essas descontinuidades (de salto) tendem à zero e por isso é
garantida a convergência, no entanto se a malha não é suficientemente fina, podem existir
erros relevantes na estima da tração.

Uma solução para o problema exposto é uma formulação alternativa onde a tração
passa a ser uma incógnita junto ao campo de deslocamentos e a formulação fraca é feita
em duas equações, a de equilibrio e a de congruência. Dessa maneira a continuidade da
tração e dos deslocamentos é imposta implicitamente nos espaços funcionais considerados.
O preço a ser pago é que nesse caso, na solução aproximada, não somente a equação de
equilíbrio, mas também a de congruência não serão satisfeitas em todo o domínio. Além
disso o fato de adicionar uma variável ao problema aumenta a dimensão do sistema linear
a ser resolvido a cada passo do método de Newton e requer uma aproximação inicial
também para a tração.

Note que na seção 2.4.5 na página 43, a formulação foi conduzida a um problema
puro em esforços, o que corresponde à extensão da idéia mencionada no parágrafo anterior
a um caso onde a equação de equilíbrio é imposta implicitamente no espaço funcional e
onde a formulação fraca corresponde à imposição da equação de congruência em modo
fraco (e não da equação de equilíbrio como no caso da formulação primária). É importante
notar que esse procedimento foi possível somente para um caso simplificado do problema
real e que nem sempre é possível obter uma formulação pura em esforços.

A idéia exposta é a base do chamado mixed or hybrid finite element method. Para
o leitor interessado veja (SACCO, 2007).

52 Capítulo 3. Materiais e métodos

Nesse contexto a formulação forte do problema será um conjunto de três equações
geradas com a substituição da lei de Hooke 2.36 nas equações de equilíbrio 3.1 e de
congruência 2.32:

d
ds

(
EAN

EA+N

d~r
ds

)
+ ~f

(
1 + N

EA

)
= 0 (3.14a)

1
2

(
d~r
ds

)2

− 1
2

(
1 + N

EA

)2
= 0 (3.14b)

Conforme feito na seção anterior, o sistema não linear de equações a derivadas
parciais 3.14 denotado com L(x, y,N) deve ser linearizado, e para isso se usa a derivada
de Gâteaux. Mais uma vez omitimos os cálculos pois são tediosos.

DL1
(∆x,∆y,∆N)(x, y,N) = d

ds

 EAN

EA+N
∆x′ +

(
EA

EA+N

)2
x′∆N

+

+
(

1 + N

EA

)
Cdsgn(f(y)y′)

− 3(f(y))2x′y′3

(x′2 + y′2) 5
2

∆x′ + 2f(y)f ′(y)y′3

(x′2 + y′2) 3
2

∆y+

+ 3(f(y))2x′2y′2

(x′2 + y′2) 5
2

∆y′
+ Cdsgn(f(y)y′)(f(y))2y′3

EA(x′2 + y′2) 3
2

∆N

(3.15a)

DL2
(∆x,∆y,∆N)(x, y,N) = d

ds

 EAN

EA+N
∆y′ +

(
EA

EA+N

)2
y′∆N

+

−
(

1 + N

EA

)
Cdsgn(f(y)y′)

(f(y))2
(
− 2x′2y′2 + y′4

)
(x′2 + y′2) 5

2
∆x′ + 2f(y)f ′(y)x′y′2

(x′2 + y′2) 3
2

∆y+

+
(f(y))2

(
2x′3y′ − x′y′3

)
(x′2 + y′2) 5

2
∆y′

+
q − Cdsgn(f(y)y′)(f(y))2x′y′2

(x′2 + y′2) 3
2

 1
EA

∆N

(3.15b)

DL3
(∆x,∆y,∆N)(x, y,N) = x′∆x′ + y′∆y′ − 1

EA

(
1 + N

EA

)
∆N (3.15c)

De maneira analoga à seção anterior o método de Newton em forma vetorial se
escreve:

Sendo ~∆u = (∆x,∆y,∆N) a incógnita e ~u0 = (x0, y0, N0) uma aproximação inicial
da solução, deve-se resolver iterativamente o problema 3.16 até que seja satisfeito um
critério de convergência ou se chegue a um número máximo de iterações.

DL ~∆u(~uk) = −L(~uk) (3.16a)

~uk+1 = ~uk + ~∆u (3.16b)

3.1. Análise e formulação do problema 53

Para cada iteração do método de Newton é feita a formulação fraca de 3.16a
que se obtém de modo ligeiramente diferente do usado na seção anterior: para as duas
primeiras equações o procedimento é o mesmo e através da multiplicação escalar seguida de
integração e integração por partes se gera uma única equação integral. A segunda equação
integral se gera de modo análogo. Observe a equação 3.17 para entender o procedimento:

∫ L

0

 DL1
~∆u(~uk)

DL2
~∆u(~uk)

 .
 δx

δy

 ds =
∫ L

0

 L1(~uk)
L2(~uk)

 .
 δx

δy

 ds ∀(δx, δy) ∈ V (3.17a)

∫ L

0
DL3

~∆u(~uk).δNds =
∫ L

0
L3(~uk).δNds ∀δN ∈ Q (3.17b)

Sendo que Q = L2(0, L)1.

A equação 3.17 é pronta para a fase de discretização e implementação do método
de Galerkin. Como para a seção anterior convém adotar uma notação mais compacta para
a formulação fraca, conforme a seguinte:

∫ L

0
−

Am11(xk, yk, Nk) Am12(xk, yk, Nk) Am13(xk, yk, Nk)
Am21(xk, yk, Nk) Am22(xk, yk, Nk) Am23(xk, yk, Nk)




∆x′

∆y′

∆N

 .
 δx′

δy′

+

+
Bm11(xk, yk, Nk) Bm12(xk, yk, Nk)
Bm21(xk, yk, Nk) Bm22(xk, yk, Nk)

 ∆x′

∆y′

 .
 δx

δy

+

+
Cm11(xk, yk, Nk) Cm12(xk, yk, Nk) Cm13(xk, yk, Nk)
Cm21(xk, yk, Nk) Cm22(xk, yk, Nk) Cm23(xk, yk, Nk)




∆x
∆y
∆N

 .
 δx

δy

 ds =

=
∫ L

0

 Lm1
A (xk, yk, Nk)
Lm2
A (xk, yk, Nk)

 δx′

δy′

−
 Lm1

B (xk, yk, Nk)
Lm2
B (xk, yk, Nk)

 δx

δy

 ds

(3.18a)

∫ L

0

[
x′ky

′
k − 1

EA

(
1 + Nk

EA

)]
.


∆x′

∆y′

∆N

 δNds = −
∫ L

0

[
1
2
(
x′2k + y′2k

)
− 1

2

(
1 + Nk

EA

)2]
δNds

(3.18b)

Onde:
Am11(xk, yk, Nk) = Am22(xk, yk, Nk) = EANk

EA+Nk

(3.19a)

Am12(xk, yk, Nk) = Am21(xk, yk, Nk) = 0 (3.19b)

Am13(xk, yk, Nk) =
(

EA

EA+Nk

)2
xk (3.19c)

1 Veja o anexo B para a definição do espaço funcional L2(Ω)

54 Capítulo 3. Materiais e métodos

Am23(xk, yk, Nk) =
(

EA

EA+Nk

)2
yk (3.19d)

Bm11(xk, yk, Nk) = −3
(

1 + Nk

EA

)
Cdsgn(f(yk)y′k)

(f(yk))2x′ky
′3
k

(x′2k + y′2k) 5
2

(3.19e)

Bm12(xk, yk, Nk) = 3
(

1 + Nk

EA

)
Cdsgn(f(yk)y′k)

(f(yk))2x′2k y
′2
k

(x′2k + y′2k) 5
2

(3.19f)

Bm21(xk, yk, Nk) =
(

1 + Nk

EA

)
Cdsgn(f(yk)y′k)

(f(yk))2
(
2x′2k y′2k − y′2k

)
(x′2k + y′2k) 5

2
(3.19g)

Bm22(xk, yk, Nk) = −
(

1 + Nk

EA

)
Cdsgn(f(yk)y′k)

(f(yk))2
(
2x′3k y′k − xky′3k

)
(x′2k + y′2k) 5

2
(3.19h)

Cm11(xk, yk, Nk) = Cm21(xk, yk, Nk) = 0 (3.19i)

Cm12(xk, yk, Nk) = 2
(

1 + Nk

EA

)
Cdsgn(f(yk)y′k)

f(yk)f ′(yk)y′3k
(x′2k + y′2k) 3

2
(3.19j)

Cm13(xk, yk, Nk) = fx(xk, yk)
EA

= Cdsgn(f(yk)y′k)
(f(yk))2y′3k

EA(x′2k + y′2k) 3
2

(3.19k)

Cm22(xk, yk, Nk) = −2
(

1 + Nk

EA

)
Cdsgn(f(yk)y′k)

f(yk)f ′(yk)xky′2k
(x′2k + y′2k) 3

2
(3.19l)

Cm13(xk, yk, Nk) = fy(xk, yk)
EA

= 1
EA

(
q − Cdsgn(f(yk)y′k)

(f(yk))2xky
′2
k

(x′2k + y′2k) 3
2

)
(3.19m)

Lm1
A (xk, yk, Nk) = EANk

EA+Nk

x′k (3.19n)

Lm2
A (xk, yk, Nk) = EANk

EA+Nk

y′k (3.19o)

Lm1
B (xk, yk, Nk) =

(
1 + N

EA

)
fx(xk, yk) (3.19p)

Lm2
B (xk, yk, Nk) =

(
1 + N

EA

)
fy(xk, yk) (3.19q)

3.1.2 Discretização e aproximação com o método de Galerkin

Como observado anteriormente, a resolução completa do problema é dada pela
resolução iterativa das equações 3.11 e 3.18 respectivamente para os casos de formulação
clássica e formulação mista. Nesta seção é descrita uma iteração do método, isto é a
resolução das equações 3.11 e 3.18 pelo método de Galerkin.

3.1. Análise e formulação do problema 55

3.1.2.1 Método de Galerkin - formulação clássica

Seja a partição Th do domínio [0, L] sendo h o parâmetro de dimensão dos elementos
(quanto menor h menor o comprimento dos segmentos) e seja o conjunto de elementos{
Ke

}ne
e=1

tal que ∪nee=1Ke = Th. Introduzindo o espaço dos elementos finitos Uh ⊂ U onde
a deflexão interna de cada elemento é a interpolação polinomial dos deslocamentos de seus
nós, i.é.:

Uh =
{

[∆xh,∆yh] ∈ C0([0, L])× C0([0, L]) : ∆xh
∣∣∣
Ke
, ∆yh

∣∣∣
Ke
∈ Pr(Ke) ∀Ke ∈ Th

}
(3.20)

Dois parâmetros caracterizam a aproximação: a quantidade de elementos da partição
(inversamente proporcional a h) e o grau de aproximação polinomial r. Como se trata de
um domínio 1D, a quantidade de nós requerida para cada elemento é nen = r+ 1, suficiente
para a interpolação do correspondente polinômio local.

Como já dito, a idéia do método é encontrar o elemento do espaço 3.20 que minimize
a energia potencial total de deformação. A validade do método se dá pelo fato do espaço
Uh possuir a propriedade de saturação2 em relação a U .

Seja ne o número de elementos da malha e para o caso de malha uniforme Ke =
(eh, eh+ h) e = 0, 1, . . . , ne − 1 onde h = L

ne
. Tomando um elemento qualquer considera-se

o campo de deflexões (ou de deslocamentos):

∆xh(s) =
ne−1∑
e=0

nen−1∑
i=0

∆Xe
i φ

e
i (3.21a)

∆yh(s) =
ne−1∑
e=0

nen−1∑
i=0

∆Y e
i φ

e
i (3.21b)

Sendo φei a função de forma do e-ésimo elemento relacionada ao i-ésimo nó (i =
0, 1, . . . , nen − 1).

Com essa discretização, um número finito de parâmetros (deslocamentos em cada
nó do domínio) é suficiente a caracterizar todo o campo de deslocamentos. Observe-se
que, excluindo os nós de fronteira, o último nó de cada elemento coincide com o primeiro
do elemento seguinte, isso significa que para o caso de um espaço de aproximação com
polinômios de primeiro grau (dois nós por elemento) são presentes nn = 2ne − ne + 1 nós
e para polinômios de segundo grau nn = 2ne + 1 pois aos nós anteriores se adiciona um
nó interno para cada elemento. Assim, como as incógnitas são duas, são necessários 2nn
parâmetros para a descrição completa do estado de deflexão do problema.

Considerando que cada nó possui uma ou duas funções de forma (uma para nós
internos e de fronteira do domínio e duas para os restantes) e considerando ψn(s) =
2 Ver a página 34 para a definição.

56 Capítulo 3. Materiais e métodos

∑nec(n)
i=1 φie(s) a soma das funções de forma do n-ésimo nó que possui nec = nec(n) elementos

em comum, a 3.21 pode ser rescrita da seguinte maneira:

∆xh(s) =
nn−1∑
n=0

∆Xnψn(s) (3.22a)

∆yh(s) =
nn−1∑
n=0

∆Ynψn(s) (3.22b)

O sistema linear correspondente se obtém substituindo o campo 3.22 na equação
3.11 e tomando 2nn deslocamentos virtuais linearmente independentes iguais exatamente a
[ψn(s), 0] ou [0, ψn(s)] onde n = 0, 1, . . . , nn. Veja a 3.23 para o sistema linear equivalente:KXX(xk, yk) KXY (xk, yk)

KY X(xk, yk) KY Y (xk, yk)

 ~∆X
~∆Y

 =
 ~Fx(xk, yk)
~Fy(xk, yk)

 (3.23)

Onde, tomando os termos das equações 3.9 e 3.12:

KXX,ij(xk, yk) =
nec∑
e=1

∫
Ke
−A11(xk, yk)

dψj
ds

dψi
ds + B11(xk, yk)

dψj
ds ψi+

+ C11(xk, yk)ψjψids i, j = 1, 2, . . . , nn
(3.24a)

KXY,ij(xk, yk) =
nec∑
e=1

∫
Ke
−A12(xk, yk)

dψj
ds

dψi
ds + B12(xk, yk)

dψj
ds ψi+

+ C12(xk, yk)ψjψids i, j = 1, 2, . . . , nn
(3.24b)

KY X,ij(xk, yk) =
nec∑
e=1

∫
Ke
−A21(xk, yk)

dψj
ds

dψi
ds + B21(xk, yk)

dψj
ds ψi+

+ C21(xk, yk)ψjψids i, j = 1, 2, . . . , nn
(3.24c)

KY Y,ij(xk, yk) =
nec∑
e=1

∫
Ke
−A22(xk, yk)

dψj
ds

dψi
ds + B22(xk, yk)

dψj
ds ψi+

+ C22(xk, yk)ψjψids i, j = 1, 2, . . . , nn
(3.24d)

~FXi(xk, yk) =
nec∑
e=1

∫
Ke
L1
A(xk, yk)

dψi
ds − L

1
B(xk, yk)ψids i = 1, 2, . . . , nn (3.24e)

~FY i(xk, yk) =
nec∑
e=1

∫
Ke
L2
A(xk, yk)

dψi
ds − L

2
B(xk, yk)ψids i = 1, 2, . . . , nn (3.24f)

A quantidade nec = nec(ij) indica o número de elementos em comum entre os nós i
e j. Esse número pode ser zero para nós que pertencem a elementos diferentes, um para nós
diferentes pertencentes ao mesmo elemento e dois para nós nas extremidades de elementos
onde vale também i = j.

Na realidade a organização da matriz é um pouco diferente pois os nós de Dirichlet
são colocados por último por uma questão de implementação, mas essa discussão será
abordada numa parte posterior do texto para evitar repetições.

3.1. Análise e formulação do problema 57

3.1.2.2 Método de Galerkin - formulação mista

A aproximação com o método misto é muito similar à formulação clássica contudo
uma diferença importante é o fato de adotar espaços polinomiais diferentes entre variáreis de
deslocamento e de força. Essa abordagem é sugerida pelo próprio fato que a distribuição de
tração possui regularidade3 menor que a distribuição de deslocamento pois é proporcional
à derivada dessa última. Assim, os espaços funcionais de aproximação serão do seguinte
tipo:

Uh =
{

[∆xh,∆yh] ∈ C0([0, L])× C0([0, L]) : ∆xh
∣∣∣
Ke
, ∆yh

∣∣∣
Ke
∈ Pr(Ke) ∀Ke ∈ Th

}
(3.25a)

Qh =
{

[∆Nh] ∈ L2([0, L]) : ∆Nh

∣∣∣
Ke
∈ Pt(Ke) ∀Ke ∈ Th

}
(3.25b)

Com t < r. Note que P0(Ke) é o espaço onde os valores são constantes no interior
de Ke.

Com esse fato, se conclui que o número de nós do problema difere em deslocamentos
e trações. Seja ϕn(s) n = 1, 2, . . . , nnt a soma das funções de forma relacionadas ao n-ésimo
nó da variável tração, onde nnt é o número total de nós relacionados ao campo de trações.

Como feito na seção anterior, após a substituição dos campos de deslocamento e de
tração aproximados na 3.18 e impondo os deslocamentos virtuais como sendo as 2nn + nnt

somas de funções de forma associadas a um mesmo nó, se chega ao seguinte sistema linear:


Km
XX(xk, yk, Nk) Km

XY (xk, yk, Nk) Km
XN(xk, yk, Nk)

Km
YX(xk, yk, Nk) Km

Y Y (xk, yk, Nk) Km
YN(xk, yk, Nk)

Km
NX(xk, yk, Nk) Km

NY (xk, yk, Nk) Km
NN(xk, yk, Nk)



~∆X
~∆Y
~∆N

 =


~FX

m
(xk, yk, Nk)

~FY
m

(xk, yk, Nk)
~FN

m
(xk, yk, Nk)


(3.26)

Onde, tomando os termos das equações 3.19:

Km
XX,ij(xk, yk, Nk) =

nec∑
e=1

∫
Ke
−Am11(xk, yk, Nk)

dψj
ds

dψi
ds + Bm11(xk, yk, Nk)

dψj
ds ψi+

+ Cm11(xk, yk, Nk)ψjψids i, j = 1, 2, . . . , nn
(3.27a)

Km
XY,ij(xk, yk, Nk) =

nec∑
e=1

∫
Ke
−Am12(xk, yk, Nk)

dψj
ds

dψi
ds + Bm12(xk, yk, Nk)

dψj
ds ψi+

+ Cm12(xk, yk, Nk)ψjψids i, j = 1, 2, . . . , nn
(3.27b)

3 A regularidade de uma função é uma noção que avalia pontos críticos como ângolos, assíntotas e
cúspedes. Para quantificar essa noção se estuda a continuidade das derivadas da função: por exemplo
uma função em C1(Ω) é uma função contínua com derivada contínua e uma função em C2(Ω) é uma
função contínua com todas derivadas até a segunda ordem contínuas. Assim pode-se afirmar que
C2(Ω) ⊂ C1(Ω) e que uma função genérica de C2(Ω) possui regularidade maior ou igual a uma função
de C1(Ω).

58 Capítulo 3. Materiais e métodos

Km
XN,ij(xk, yk, Nk) =

nec∑
e=1

∫
Ke
−Am13(xk, yk, Nk)ϕj

dψi
ds + Cm13(xk, yk, Nk)ϕjψids+

i = 1, 2, . . . , nn j = 1, 2, . . . , nnt
(3.27c)

KY X,ij(xk, yk, Nk) =
nec∑
e=1

∫
Ke
−Am21(xk, yk, Nk)

dψj
ds

dψi
ds + Bm21(xk, yk, Nk)

dψj
ds ψi+

+ Cm21(xk, yk, Nk)ψjψids i, j = 1, 2, . . . , nn
(3.27d)

Km
Y Y,ij(xk, yk, Nk) =

nec∑
e=1

∫
Ke
−Am22(xk, yk, Nk)

dψj
ds

dψi
ds + Bm22(xk, yk, Nk)

dψj
ds ψi+

+ Cm22(xk, yk, Nk)ψjψids i, j = 1, 2, . . . , nn
(3.27e)

KY N,ij(xk, yk, Nk) =
nec∑
e=1

∫
Ke
−Am23(xk, yk, Nk)ϕj

dψi
ds + Cm23(xk, yk, Nk)ϕjψids+

i = 1, 2, . . . , nn j = 1, 2, . . . , nnt
(3.27f)

Km
NX,ij(xk, yk, Nk) =

nec∑
e=1

∫
Ke
x′k

dψj
ds ϕids i = 1, 2, . . . , nnt j = 1, 2, . . . , nn (3.27g)

Km
NY,ij(xk, yk, Nk) =

nec∑
e=1

∫
Ke
y′k

dψj
ds ϕids i = 1, 2, . . . , nnt j = 1, 2, . . . , nn (3.27h)

Km
NN,ij(xk, yk, Nk) = −

nec∑
e=1

∫
Ke

1
EA

(
1 + Nk

EA

)
ϕjϕids i, j = 1, 2, . . . , nnt (3.27i)

~FX
m

i (xk, yk, Nk) =
nec∑
e=1

∫
Ke
Lm1
A (xk, yk, Nk)

dψi
ds − L

m1
B (xk, yk, Nk)ψids i = 1, 2, . . . , nn

(3.27j)

~FY
m

i (xk, yk, Nk) =
nec∑
e=1

∫
Ke
Lm2
A (xk, yk, Nk)

dψi
ds − L

m2
B (xk, yk, Nk)ψids i = 1, 2, . . . , nn

(3.27k)

~FN
m

i (xk, yk, Nk) = −
nec∑
e=1

∫
Ke

1
2

(
x′2k + y′2k −

(
1 + Nk

EA

)2)
ϕids i = 1, 2, . . . , nnt (3.27l)

3.1. Análise e formulação do problema 59

3.1.3 O problema local em sua formulação axissimétrica

Nesta seção será feito um estudo dos efeitos axissimétricos relacionados ao pro-
blema. É importante notar que os efeitos axissimétricos não influenciam a forma que
a estrutura assume pois suas componentes são equilibradas em todas as direções. Uma
outra consideração importante é que esses efeitos podem ser estudados localmente4 pois
os gradientes dos esforços (pressões e mudanças de temperatura) aos quais o corpo é
submetido são ínfimos e dessa maneira é possível estudar somente uma porção pequena do
comprimento da tubulação.

O problema estrutural é, na realidade, acoplado ao problema térmico pois as
constantes de elasticidade (E e G) são dependentes da temperatura assim como a constante
de difusão térmica (α) é dependente do estado de tensão local. Esse efeito será desprezado
pois é pouco relevante e a abordagem utilizada para a componente axissimétrica e estática
do problema será a de considerar um isolamento perfeito, i.é.: a temperatura no interior da
parede do tubo interno será considerada igual à do óleo que flui e a temperatura externa à
parede do tubo externo será considerada igual à do oceano. Nessa ótica a solução da parte
axissimétrica do problema é composta de duas etapas:

i Solução do modelo de difusão térmica que é, no máximo, bidimensional, dada a
axissimetria do problema;

ii Inclusão do efeito térmico no modelo estrutural axissimétrico através dos contributos
forçantes que derivam da variação de temperatura e consequente expansão/contração
da estrutura.

3.1.3.1 Difusão térmica

A temperatura do fluido, dada a hipótese de isolamento perfeito, permanecerá
inalterada por todo o comprimento do riser, já a temperatura do oceano será considerada
em uma primeira análise constante e posteriormente será incluído o efeito da variação da
temperatura externa usando como parâmetro uma curva de temperatura por profundidade,
como na figura 8.

Da equação de Fourier e do balanço energético pode-se obter a equação que rege a
difusão de temperatura no caso de material isotropo mas não homogêneo (pela presença
de mais de um material isotropo):

−div(c(r)∇T (~x)) = 0 ∀~x ∈ Ω
T (Ri) = T i(z)
T (Re) = T e(z) ,

(3.28)

4 Com a expressão localmente refere-se ao fato de tomar um pequeno comprimento da tubulação e não
ao significado que a palavra assume usualmente no contexto do estudo de vigas (i.é. estudo das tensões
a partir dos esforços solicitantes de uma seção transversal).

60 Capítulo 3. Materiais e métodos

Figura 8: Temperatura da água do oceano em relação à profundidade.

Fonte: http://www.windows2universe.org/earth/Water/temp.html (BERGMAN,)

Com c(r) o coeficiente de difusão térmica que é função do material e portanto do
raio r dada a geometria da tubulação. Se os materiais não apresentassem isotropia c seria
uma matriz simétrica e definida positiva.

Finalmente se procede à formulação variacional: nesse caso o problema é full-
Dirichlet com condições não homogêneas e assim sendo se usa uma mudança de variável
com auxílio de uma função dita de relevo R = R(r, z) construída ad hoc em modo a
satisfazer as seguintes relações:  R(Ri, z) = Ti(z)

R(Re, z) = Te(z),
(3.29)

É suficiente tomar uma função que interpole linearmente os dados na fronteira.
Em seguida o problema se constrói com a variável T̂ (r, z) = T (r, z)−R(r, z) que assume,
por definição, valores nulos na fronteira de Dirichlet (r = Ri e r = Re). Substituindo a
nova variável, multiplicando a equação por uma função de teste de H1

0 (Ω), integrando a
direita e a esquerda a EDP e usando a fórmula de Green se chega à seguinte formulação
variacional:

http://www.windows2universe.org/earth/Water/temp.html

3.1. Análise e formulação do problema 61

Encontrar T̂ ∈ H1
0 (Ω) de modo que:∫

Ω
c(r)∇T̂ (~x)∇φ(~x)dV (~x) = −

∫
Ω
c(r)∇R(~x)∇φ(~x)dV (~x) ∀φ ∈ H1

0 (Ω) (3.30)

Sendo um problema axissimétrico se reduz a um problema 2D e, no caso de
temperaturas externas constantes, se reduz adicionalmente a um problema 1D. Para o caso
2D deve-se impor condições de contorno também na parte superior e inferior da superfície,
que será uma condição de Newmann de fluxo de calor nulo (∂T

∂~n
= 0 ∈ ΓN).

Finalmente, especificando os extremos de integração a formulação, pronta para a
fase de discretização é:

Encontrar T̂ ∈ H1
0 (Ω) tal que:

∫ L

0

∫ Re

Ri
c(r)

{
∂T̂ (r, z)
∂r

∂φ(r, z)
∂r

+ ∂T̂ (r, z)
∂z

∂φ(r, z)
∂z

}
rdrdz =

= −
∫ L

0

∫ Re

Ri
c(r)

{
∂R(r, z)
∂r

∂φ(r, z)
∂r

+ ∂R(r, z)
∂z

∂φ(r, z)
∂z

}
rdrdz ∀φ ∈ H1

ΓD(Ω)
(3.31)

Uma vez resolvido o problema 3.31 resta fazer a substituição T (r, z) = T̂ (r, z) +
R(r, z).

Operacionalmente o que se faz é construir o sistema linear com uma base de um
subespaço deH1(Ω) (não deH1

ΓD(Ω)) e sucessivamente passar a direita a parcela correspon-
dente ao contributo de Dirichlet uma vez conformado o sistema. Sendo uma aproximação
de segundo grau, o espaço usado é X2

h =
{
vh ∈ C0(Ω) : vh|Ki ∈ P2(Ki), ∀Ki ∈ Th

}
.

Usando uma base ψi(~x) con i = 1, 2, . . . , nn do espaço X2
h com nn o número de nós (ou

graus de liberdade pois coincidem nesse caso). Tendo posto ψi(~x) = ∑ne
e=1 φ

i
e(~x) onde φie(~x)

são as funções lagrangeanas associadas ao i-ésimo nó no e-ésimo elemento ao qual tal
nó pertence. Em outras palavras, ψi(~x) é a soma das funções lagrangeanas as quais um
mesmo nó é relacionado, veja a seguir a distribuição do número de funções de forma para
cada tipo de nó:

• quatro para nós no interior do domínio nos vértices dos elementos;

• duas para nós no interior do domínio e nas faces dos elementos;

• uma para nós no interior do domínio e interiores aos elementos;

• duas para nós no contorno do domínio e nos vértices dos elementos (excluídos os nós
de vértice de domínio);

• uma para nós no contorno do domínio e nas faces dos elementos;

• uma para nós nos vértices do domínio.

62 Capítulo 3. Materiais e métodos

Com essa notação a aproximação da temperatura pode ser escrita como Th(~(x)) =∑nn
j=1 Tjψj(~x).

Deixando por último o contributo dos nós Dirichlet o sistema linear pode ser escrito
como segue:  KΩΩ KΩΓD

KΓDΩ KΓDΓD

 ~TΩ
~TΓD

 =
~0
~0

 (3.32)

Com:

Kij
ΩΩ =

nec∑
e=1

∫
Ke
c(r)r∇ψi(r, z).∇ψj(r, z)d(r)d(z) i, j = 1, 2, . . . , nΩ (3.33a)

Kij
ΩΓD =

nec∑
e=1

∫
Ke
c(r)r∇ψi(r, z).∇ψj(r, z)d(r)d(z) i = 1, . . . , nΩ; j = nΩ + 1, . . . , nn

(3.33b)

Kij
ΩΓD = Kji

ΓDΩ (3.33c)

Kij
ΓDΓD =

nec∑
e=1

∫
Ke
c(r)r∇ψi(r, z).∇ψj(r, z)d(r)d(z) i, j = nΩ + 1, . . . , nn (3.33d)

Com nec o número de elementos que os nós i e j possuem em comum, nΩ o número
de nós internos ao domínio mais o número de nós presentes na fronteira de Neumann e nn
o número total de nós. Note que os últimos nn−nΩ são os nós que pertencem a fronteirade
Dirichlet.

O sistema linear pode portanto ser resolvido como na equação 2.15 na página 33
em ausência de vetor forçante.

3.1.3.2 Inclusão do efeito térmico no problema axissimétrico

Uma vez resolvido o sistema de difusão térmica e dispondo da distribuição de
temperatura no corpo, a expansão/contração gerada pela variação de temperatura local
produz, por sua vez, tensões. Considerando nulas as autotensões provenientes de processos
produtivos, a relação A.27 (lei de Hooke) na página 107 em presença de efeitos anelásticos
térmicos, ainda sob hipótese de isotropia se escreve:

σij = 2µeij + λδijekk (3.34)

Com eij = εij − δijα∆T a parte elástica do tensor de Cauchy, α coeficiente de
expansão térmica e ∆T = T − T0 com T0 uma temperatura de referência na qual as
deformações anelásticas se anulam.

3.1. Análise e formulação do problema 63

A relação constitutiva final fica conforme a equação 3.35:

σij = 2µεij + δij [λekk − (2µ+ 3λ)α∆T] (3.35)

Com o mesmo procedimento usado na formulação variacional 2.4 mas usando a
nova relação entre tensões e deformações 3.34 aparece uma nova parcela a direita da
formulação:

Encontrar ~u(~x) ∈ H1
ΓD(Ω;R3) tal que:∫

Ω
[2µ(r)E(~u) : E(~v) + λ(r)Tr(E(~u))Tr(E(~v))] dΩ =

=
∫

Ω

[
~b.~v + (2µ(r) + 3λ(r))∆Tα(r)Tr(E(~v))

]
dΩ +

∫
ΓN
~p.~vdΓ

∀~v ∈ H1
ΓD(Ω;R3)

(3.36)

Note que Tr(E(~u)) = div(~u).

Com a axisimetria do problema e a solicitação somente no plano meridional, pode-se
afirmar que as derivadas parciais em relação a θ são nulas e que uθ = 0. As equações de
congruência interna em coordenadas cilíndricas se simplificam como segue:

εr = ∂ur
∂r

εθ = 1
r
∂uθ
∂θ

+ ur
r

= ur
r

εz = ∂uz
∂z
,


γrz = ∂ur

∂z
+ ∂uz

∂r

γrθ = 1
r
∂ur
∂θ

+ ∂uθ
∂r
− uθ

r
= −uθ

r
= 0

γθz = 1
r
∂uz
∂θ

+ ∂uθ
∂z

= 0,
(3.37)

Com essas podem ser definidos os extremos de integração e a formulação variacional
do problema específico:

Encontrar ~u(r, z) = (ur(r, z), uz(r, z)) ∈ H1
ΓD([Ri, Re]× [0, L];R2) tal que:

∫ L

0

∫ Re

Ri
2µ(r)r

{
∂ur
∂r

∂vr
∂r

+ ur
r

vr
r

+ ∂uz
∂z

∂vz
∂z

+
(
∂ur
∂z

+ ∂uz
∂r

)(
∂vr
∂z

+ ∂vz
∂r

)}
+

+ λ(r)r
{(

∂ur
∂r

+ ur
r

+ ∂uz
∂z

)(
∂vr
∂r

+ vr
r

+ ∂vz
∂z

)}
drdz =

=
∫ L

0

∫ Re

Ri
gr(ρf − ρm(r)).vz+

+ (2µ(r) + 3λ(r))rα(r)∆T (r, z)
(
∂vr
∂r

+ vr
r

+ ∂vz
∂z

)
drdz+

+
∫ L

0
Ripi(z).vrdz −

∫ L

0
Repe(z).vrdz

∀~v(r, z) = (vr, vz) ∈ H1
ΓD([Ri, Re]× [0, L];R2),

(3.38)

Onde Ri e Re são os raios interno e externo, ρf e ρm(r) são as densidades do
fluido movido (água) e do material (por isso a dependência em relação a r). Por último
L é o comprimento do riser e g a aceleração da gravidade. Note também a dependência

64 Capítulo 3. Materiais e métodos

dos parâmetros µ, λ e α em relação a r e a dependência de pi e pe em relação a z. A
temperatura T é fornecida pela resolução do sistema de difusão.

A essa altura é pertinente discutir as hipóteses adotadas e esclarecer alguns pontos:
na formulação desenvolvida, alguns fenômenos foram desprezados como o efeito do fluxo
interno e outros não incluídos pois já estudados na etapa global como o carregamento
de correntes. Os efeitos do empuxo e do peso próprio foram incluídos na última equação
somente para ilustrar como incluir carregamentos de volume porém na etapa de cálculo
não serão considerados pois já abordados na etapa global. A tubulação, nessa etapa é
considerada engastada em uma extremidade onde, portanto, é usada condição de contorno
de Dirichlet homogênea (i.é.: ~u = ~0 para z = 0) e livre para translações axiais na outra
(por isso não aparecem forçastes de superfície para o extremo superior).

Sob as observações anteriores a equação 3.38 é pronta para a fase de discretização
através do método de Galerkin descrito na seção 2.2.2. O procedimento é análogo ao
utilizado no desenvolvimento do problema da difusão de temperatura mas com o espaço
funcional bidimensional Vh = X2

h × X2
h =

{
[vr, vz] ∈ C0(Ω) × C0(Ω) : vr|Ki , vz|Ki ∈

P2(Ki), ∀Ki ∈ Th

}
.

Omitindo o procedimento formal (suficientemente tedioso dada a complexidade de
notação e do termo a esquerda da 3.38) se observa que o sistema final será do tipo:

KUU
ΩΩ KUV

ΩΩ KUU
ΩΓD KUV

ΩΓD
KV U

ΩΩ KV V
ΩΩ KV U

ΩΓD KV V
ΩΓD

KUU
ΓDΩ KUV

ΓDΩ KUU
ΓDΓD KUV

ΓDΓD
KV U

ΓDΩ KV V
ΓDΩ KV U

ΓDΓD KV V
ΓDΓD




~UΩ
~VΩ
~UΓD
~VΓD

 =


~FU

Ω
~F V

Ω
~FU

ΓD
~F V

ΓD

 (3.39)

Tendo posto ~U como vetor de incógnitas de ur e ~V vetor de incógnitas de uz.

KUU,ij
ΩΩ =

nec∑
e=1

∫
Ke

2µ(r)r
{
∂ψj
∂r

∂ψi
∂r

+ ψjψi
r2 + ∂ψj

∂z

∂ψi
∂z

}
+

+ λ(r)r
{
∂ψj
∂r

∂ψi
∂r

+ ψj
r

∂ψi
∂r

+ ∂ψj
∂r

ψi
r

+ ψjψi
r2

}
d(r)d(z)

(3.40)

Com i, j = 1, . . . , nΩ e nΩ o número de nós internos mais o número de nós sobre o
contorno de Neumann.

KUV,ij
ΩΩ =

nec∑
e=1

∫
Ke

2µ(r)r
{
∂ψj
∂r

∂ψi
∂z

}
+ λ(r)r

{
∂ψj
∂z

∂ψi
∂r

+ ∂ψj
∂z

ψi
r

}
d(r)d(z) (3.41)

Com i, j = 1, . . . , nΩ.

KV V,ij
ΩΩ =

nec∑
e=1

∫
Ke

2µ(r)r
{
∂ψj
∂z

∂ψi
∂z

+ ∂ψj
∂r

∂ψi
∂r

}
+ λ(r)r

{
∂ψj
∂z

∂ψi
∂z

}
d(r)d(z) (3.42)

Com i, j = 1, . . . , nΩ.

3.2. Os instrumentos utilizados 65

As componentes da matriz KUU
ΩΓD , KUV

ΩΓD , KV V
ΩΓD , KUV

ΓDΓD , KUU
ΓDΓD e KV V

ΓDΓD possuem
expressões similares às já obtidas (KUU

ΩΓD similar a KUU
ΩΩ , KUV

ΩΓD similar a KUV
ΩΩ e assim

por diante) mas com os índices i e j percorrendo 1, . . . , nΩ ou nΩ + 1, . . . , nn dependendo
se correspondem a funções de nós de Dirichlet ou não. Para as restantes componentes
observa-se que a matriz é simétrica.

FU,i
Ω =

nec∑
e=1

∫
Ke

(2µ(r) + 3λ(r))rα(r)∆T (r, z)
{
∂ψi
∂r

+ ψi
r

}
d(r)d(z)+

+
∫
∂Ke∩ΓN

p(r, z)rψid(z)
(3.43)

Com i = 1, . . . , nΩ, p(Ri, z) = pi(z) e p(Re, z) = −pe(z).

FV,i
Ω =

nec∑
e=1

∫
Ke

(2µ(r) + 3λ(r))rα(r)∆T (r, z)
{
∂ψi
∂z

}
+

+ gr(ρf − ρm(r))ψid(r)d(z)
(3.44)

Com i = 1, . . . , nΩ.

Ainda uma vez observa-se que as parcelas FU
ΓD e FV

ΓD são iguais às anteriores
mudando somente o caminho dos índices i = 1, . . . , nΩ a i = nΩ + 1, . . . , nn.

No apêndice A na página 1 são presentes os códigos onde pode-se observar os
detalhes implementativos.

3.2 Os instrumentos utilizados
Com o avanço tecnológico no ramo da projetação de softwares, um fenômeno

recorrente é o da automatização de procedimentos de cálculo e avaliação numérica de
problemas complexos. Esse fenômeno gera, por um lado, uma acessibilidade maior à
procedimentos de cálculo numérico e um maior dinamismo na formulação de tais problemas.
Por outro lado, aumenta a tendência à erros por ausência de conhecimento do usuário
em relação aos algoritmos utilizados na resolução. Muitas vezes softwares com interfaces
gráficas muito desenvolvidas simplificam a fase de configuração omitindo grande parte
dos parâmetros sobre os quais é possível agir. Por mais robustos que sejam os métodos,
a análise numérica de problemas complexos não pode ser resumida a simples etapas de
configurações pois com o tempo o analista se distancia dos potenciais pontos críticos
de uma simulação numérica e do modelo que está por traz da implementação. Ainda
mais delicado são os casos nos quais são presentes não-linearidades pois tornam quase
impossíveis automatizações confiáveis e eficientes.

Evidentemente a direção contrária também oferece riscos já que seria inútil a cada
novo problema reiniciar desde à implementação da resolução de sistemas lineares quando
já existem implementações com pouca margem para melhorias. Nesse sentido, a etapa

66 Capítulo 3. Materiais e métodos

numérica do presente texto será conduzida em linguagem C++ com auxílio da biblioteca
de elementos finitos libmesh.

3.2.1 A linguagem C++ e a biblioteca libmesh

A linguagem C++ é uma das mais utilizadas na atualidade em problemas do
cálculo científico pois combina a versatilidade da programação orientada a objetos (Object-
oriented programming) com a eficiência de uma linguagem de baixo nível5. A própria
biblioteca libmesh é um ótimo exemplo do potencial da linguagem C++ pois permite,
através de polimorfismos, heranças e outros instrumentos intrínsecos da linguagem, uma
grande abstração e ligação entre conceitos. Veja a figura 9 que mostra a popularidade
da linguagem no âmbito da programação. Sem dúvidas essa popularidade, aumenta se se
considera o âmbito do cálculo científico. Outras linguagens populares no cálculo científico
são: Python, Fortran, C e MATLAB.

Finalmente, o fato de ser uma linguagem compilada torna o C++ mais eficiente que
linguagens interpretadas como por exemplo MATLAB e Python. Para o leitor interessado
na linguagem C++ veja (CPLUSPLUS. . . , 2014) e (PRATA, 2012).

A libmesh é uma biblioteca escrita em C++ onde é implementada uma estrutura
sólida para o utilizo do método dos elementos finitos. Essa biblioteca possui dentre seus
principais instrumentos:

• Classes e métodos para a geração e leitura em vários formatos de malhas computaci-
onais (Mesh generation);

• Classes e métodos para integração numérica/quadraturas;

• Estrutura organizada para a aplicação do método dos elementos finitos em diversos
problemas no âmbito das equações diferenciais parciais;

• Compatibilidade com os melhores pacotes para solução de sistemas lineares, como
por exemplo PETSc6.

• Capacidade de execução de código em paralelo, principalmente através MPI7.

A organização da implementação cabe ao projetista que deve selecionar os mínimos
detalhes do método: desde o tipo de elemento e da dimensão da malha até os métodos de
integração numérica e de resolução de sistemas lineares. Além disso, o usuário também
5 O nível de uma linguagem é uma escala fictícia que mede a distância da linguagem em relação à

linguagem das máquinas e em relação à linguagem humana. A linguagem é de baixo nível se é próxima
à linguagem das máquinas e de alto nível se é próxima à linguagem humana.

6 Para informação veja (PETSC. . . , 2014).
7 MPI - Message Passing Interface. Para mais informações veja (OPEN. . . , 2014).

3.2. Os instrumentos utilizados 67

Figura 9: Popularidade linguagens de programação - 2013

Fonte: LangPop.com (2014, http://langpop.com)

é responsável por gerir a construção dos sistemas lineares e para problemas não lineares
definir o loop do método de resolução.

Libmesh é construída com uma concepção de colaboração com outros softwares
e bibliotecas sendo que é capaz de fruir de softwares terceiros com altas prestações e de
prover outputs nos mais variados formatos para a etapa de post processing. Por último,
é presente um suporte extensivo para refinamento adaptativo de malha (adaptive mesh
refinement ou AMR) para plataformas seriais ou paralelas. Para detalhes e informações
sobre a biblioteca libmesh veja (DEVELOPERS, 2014) e para uma introdução geral veja
(VIEIRA, 2009).

3.2.2 O método de refinamento cooperativo

O problema global possui uma série de dificuldades de implementação. Dentre as
principais pode-se destacar:

i Necessidade de aproximação inicial relativamente próxima à aproximação final para
convergência do método de Newton (principalmente para o método misto);

ii Não-linearidades muito dependentes da escala e malha adotadas (scale-dependent

68 Capítulo 3. Materiais e métodos

nonlinearities);

iii Sistemas lineares mal condicionados;

iv Imprecisões e instabilidade no cálculo das trações para o método clássico;

As dificuldades encontradas fizeram da análise numérica uma etapa delicada e difícil
porém graças ao longo tempo de estudo foi possível descobrir como os métodos clássico
e misto podem ser usados de maneira cooperativa combinando suas vantagens: maior
eficiência e capacidade de convergência do método clássico8 e melhor previsão das trações
equivalentes pelo método misto são algumas das vantagens que podem ser combinadas.

Antes de tudo cabe notar que o método misto precisa ser inicializado em desloca-
mentos e em trações e é mais difícil intuir a priori o comportamento da distribuição de
trações em relação ao campo de deslocamentos. Esse fato dificulta a utilização do método
misto visto que esse converge somente para inicializações muito próximas à solução final.

Ambos os métodos clássico e misto possuem problemáticas no refinamento de
malha pois as não-linearidades do problema se amplificam conforme aumentam os graus
de liberdade gerando, em última análise, sistemas lineares mal condicionados e divergência
para malhas pouco finas.

Para responder às dificuldades mencionadas, foi usado um procedimento de resolução
alternada entre os métodos clássico e misto que associa em modo ótimo as características
de ambos os métodos. A seguir é exposto o procedimento:

Proposição 3.1 (Refinamento de malha combinado). Antes de tudo se resolve o pro-
blema com o método clássico usando uma malha pouco refinada em modo a evitar as
instabilidades que derivam das não-linearidades e a obter uma aproximação inicial para a
distribuição de trações que possa inicializar o método misto. Em seguida se usa o método
misto com uma malha mais refinada obtendo uma aproximação melhor para trações e
deslocamentos. Voltando ao método clássico é possível usar malhas ainda mais finas dada
a maior proximidade da solução inicial à solução final.

Continuando esse procedimento é possível evitar instabilidades para as trações no
método clássico e divergência para o método misto.

Na figura 10 na página 69 pode-se observar o procedimento de refinamento de
malha combinado. É interessante notar como os deslocamentos convergem rapidamente
enquanto as trações apresentam instabilidades para malhas muito refinadas para o método
clássico.
8 Com aproximações iniciais equivalentes o método clássico converge para casos que o método misto

não converge.

3.2. Os instrumentos utilizados 69

(a) Perfis no procedimento de refinamento de malha combinado.

(b) Trações no procedimento de refinamento de malha combinado.

Figura 10: Procedimento de refinamento de malha combinado.

Fisicamente, os perfis possuem curvaturas ligeiramente superiores ao perfil parabó-
lico que é usado como inicializador do método.

70 Capítulo 3. Materiais e métodos

3.2.3 Complexidade e eficiência do código para o problema axissimétrico

Uma análise sobre a complexidade dessa porção do código foi feita pelo seu maior
custo computacional em relação ao problema global. Apesar do problema global ser não
linear e portanto incorrer em inúmeras soluções de sistemas lineares, o fato de possuir um
domínio 1D ([0, L]) garante que a cada passo o sistema linear relacionado seja pequeno em
relação à dimensão do sistema linear do problema axissimétrico (possui um domínio 2D).

Para analisar a complexidade e a eficiência do algoritmo, foi usada uma abordagem
empírica com auxílio da utility PerfLog que gere a medição do tempo de execução de
porções de código oportunamente selecionadas. Dessa maneira é possível identificar gargalos
do algoritmo, isto é, as porções que apresentam maior complexidade numérica9 e portanto
que representam os pontos críticos no procedimento de refinamento de malha.

Como esperado, a parte crítica do código é a resolução dos sistemas lineares dos
problemas implícitos sendo que o problema da elasticidade é responsável por ao menos 90%
do custo computacional (proporção que aumenta com o aumento de graus de liberdade).
Na tabela 1 são apresentados os tempos de execução da solução dos sistemas implícitos
(difusão e elasticidade) e explícito (cálculo das tensões) para diversas malhas.

Tabela 1: Tempo de execução para diversas malhas

malha: 5n× 10n n = 1 n = 2 n = 4 n = 8 n = 16 n = 32
tempo Total [s]: 0.0405 0.4891 2.6789 14.4052 61.5752 282.5269

% tempo resolução elasticidade: 88.18 96.44 97.21 97.06 93.46 88, 15
% tempo resolução difuão: 6.39 1.64 1.55 1.97 5.62 11.08
% tempo resolução tensões: 5.43 1.92 1.25 0.97 0.92 0.77

Com esses dados pode-se prever a complexidade do algoritmo: considerando que
a relação de proporção entre tempo de execução t e parâmetro da malha n seja do tipo

t = kna, a fração
log(ti

ti−1
)

log(ni
ni−1

) (sendo i o número da simulação) se aproxima de a com o aumento

de n. Como ni
ni−1

= 2 para todo i tem-se que a = log2(ti
ti−1

). Usando a tabela 1 pode-se
notar que o expoente é próximo a 2. Eventuais imprecisões são devidas à capacidade de
processamento instantânea da máquina que é variável e ao fato que o modelo de proporção
não é perfeito visto que pode conter outros termos menos importantes como na seguinte
relação: t = k1n

a + k2n
b +

Com o método descrito, o expoente que se distingue é o mais alto e mais importante.
Dessa forma pode-se extrapolar o tempo requerido para simulações com mais graus de
liberdade usando o parâmetro de malha n correspondente, o coeficiênte a obtido e uma
9 A complexidade numérica é a relação de proporcionalidade entre uma dimensão característica do

INPUT do problema e o tempo de execução. As constantes são desprezadas pois são dependentes da
máquina e/ou arquitetura no entanto é interessante entender como o aumento de uma dimensão de
INPUT altera o tempo de execução de um programa.

3.2. Os instrumentos utilizados 71

constante k que é normalmente dependente da máquina em questão mas que pode-se obter
facilmente com uma das simulações já efetuadas.

Por exemplo, uma simulação com uma malha de 200x1000 (200000 elementos)
seria equivalente (em número de elementos) a uma malha com n = 64. Usando um
expoente ligeiramente maior que 2 para incluir efeitos dos termos não modelados e usando
a constante de proporcionalidade obtida para n = 32 que vale k = tn=32

n2.1 ≈ 0.195, o tempo
necessário seria de tn=64 ≈ 0.195× 642.1 ≈ 1211.22 s ≈ 20 min.

73

4 Resultados

Para a análise do problema, pretende-se sobrepor os efeitos da análise global,
que derivam exclusivamente das correntes marítimas e do peso próprio, e os da análise
axissimétrica, que derivam das pressões e das variações de temperatura. Nesse sentido, a
partir da distribuição de esforço normal que se obtém na análise global, pode-se chegar,
com algumas hipóteses, às tensões normais na seção transversal. Dessa maneira, pode-se
sobrepor essa tensão normal ao estado de esforço que se obtém no problema axissimétrico
de modo a entender o estado de esforço geral.

A rigor, a hipótese de sobreposição dos efeitos não é válida para problemas não
lineares como no caso da análise global, no entanto com considerações físicas pode-se intuir
que as não linearidades do problema global incidem muito pouco no problema local e,
viceversa, o problema axissimétrico praticamente não contribui ao problema global.

4.1 Resultados do problema global

Nesta seção pretende-se discutir os resultados obtidos na análise global do problema
estático da catenária exposto no capítulo 3.1. O estudo estático foi considerado pela
preocupação predominante quanto aos esforços aos quais a estrutura deve resistir e não
quanto à forma exata que estrutura a assume num cenário tempo-dependente. Além do
mais, as possíveis variações de corrente em um cenário não estacionário são inúmeras e
no trabalho presa-se por uma abordagem concisa e prática no procedimento de avaliação
dos esforços resultantes e na compreensão da ordem de grandeza dos diversos fenômenos
envolvidos, a qual não muda para eventuais cenários dinâmicos.

No projeto, duas abordagens diferentes foram consideradas conforme apresentado
na seção 3.1.1 do capítulo 3.1 e ambas demonstraram coerência e eficiência.

Os dados físicos utilizados no problema, em geral, são expostos na tabela 2. As
análises foram feitas variando esses parâmetros para o entendimento do comportamento
da estrutura e para verificar se o modelo responde de acordo com o esperado. Em seguida
considera-se a resposta do modelo à variação de um parâmetro por vez.

Os comentários e resultados foram feitos em relação a análises com parâmetros
numéricos gerais apresentados na tabela 3 e usando o método de refinamento de malha
cooperativo mencionado na seção 3.2.2 na página 67.

74 Capítulo 4. Resultados

Tabela 2: Dados do problema global

Comprimento indeformado do cabo (L) - [m]: 1600
Profundidade (H) - [m]: 1500

Rigidez axial do cabo (EA) - [N]: 11.3× 109

Peso imerso do cabo (q) - [N
m

]: -4012
Velocidade de corrente (Vc) - [m

s
]: 1.5

Perfil da corrente (f(y)) - adimensional: 1
Coeficiente de arrasto (drag) cabo (cd) - adimensional: 0.47

Densidade da água (ρa) [kg
m3]: 1000

Diâmetro do riser (D) [m]: 0.6

Tabela 3: Dados numéricos do problema global

Parâmetros Método clássico Método híbrido
Número de elementos: 100 150
Ordem de aproximação: 2a 2a

Número de nós da malha: 201 201
Graus de liberdade implícitos: 401 603
Graus de liberdade explícitos: 201 0

Máximo no de iterações (sistema linear): 1000 1000
Máximo no de iterações (Newton): 150 150

Tolerância (sistema linear): 10−10 10−10

Tolerância (Newton) em norma L2: 1 10

4.1.1 Variação do comprimento

A figura 11 na página 75 apresenta a resposta do modelo com os dados das tabelas
2 e 3 ao variar do comprimento da tubulação para os dois métodos utilizados.

É possível perceber que ambos os métodos conseguem colher o efeito do aumento
de comprimento. Os gráficos confirmam a validade dos modelos pois ambos os métodos
convergem precisamente à mesma solução.

Usando essa abordagem é possível impor a condição de contorno de contato variando
o comprimento da tubulação até obter aquele que prevê curvatura nula na origem (note
como o comprimento de 1600 aproxima bem essa condição). Esse método iterativo foi
sugerido por exemplo em (PESCE; MARTINS; CHAKRABARTI, 2005).

Quanto às trações resultantes, a figuras 12 na página 76 fornece a relação entre
aumento de comprimento e trações. Note que com o aumento de comprimento, como
para uma catenária pendurada, o cabo tende a assumir uma configuração que apresenta
valores negativos para ordenada. Fisicamente, esses casos não podem ser verificados pois
foi assumido que o o ponto (y = 0) corresponde ao fundo do oceano. Se, no entanto, y = 0
fosse uma bóia, a configuração teria sentido.

4.1. Resultados do problema global 75

(a) Perfil do riser para diversos comprimentos com método clássico.

(b) Perfil do riser para diversos comprimentos com método mixed.

Figura 11: Perfil do riser para diversos comprimentos

Da análise do gráfico percebe-se que, como era de se esperar, o método misto é
mais robusto e eficiente na previsão das trações. Para o método clássico o aumento do
comprimento implica uma rápida flutuação das trações que provem do cálculo explícito
das mesmas (no cálculo explícito flutuações locais podem ser facilmente amplificadas em
operações de derivação).

Outra importante conclusão é que as condições de contorno do problema incidem

76 Capítulo 4. Resultados

(a) Tração no riser para diversos comprimentos com método clássico.

(b) Tração no riser para diversos comprimentos com método misto.

Figura 12: Tração no riser para diversos comprimentos.

de modo decisivo nas trações resultantes já que, nesse intervalo de variação de compri-
mento, apesar da maior magnitude global do peso próprio da estrutura, um aumento no
comprimento acarreta diminuição das trações globais do sistema. Um olhar macroscópico
permite entender esse fato: um comprimento maior, permite à estrutura de se posicionar
em maneira “mais paralela” à corrente por uma maior amplitude de profundidade gerando
um carregamento equivalente, devido à corrente, menor.

4.1. Resultados do problema global 77

4.1.2 Variação da magnitude de corrente

As figuras 13 na página 77 apresentam os resultados da resposta estrutural ao variar
da magnitude de corrente. Os parâmetros das simulações são encontrados nas tabelas 2 e
3.

(a) Perfil do riser para diversos valores de magnitude de corrente com método
clássico.

(b) Perfil do riser para diversos valores de magnitude de corrente com método
misto.

Figura 13: Perfil do riser para diversas magnitudes de corrente.

Dos gráficos pode-se notar a mesma tendência vista no caso da variação de compri-

78 Capítulo 4. Resultados

mentos onde os modelos concordam amplamente na previsão do resultado. Note que, para
os casos expostos, uma corrente de 0.75m

s
ainda não é suficientemente forte para garantir

que todo o riser esteja acima de y = 0, situação que não é permitida fisicamente já que no
modelo em questão o ponto y = 0 é o solo.

Quanto às trações pode-se verificar como o aumento de corrente tensiona progressi-
vamente o cabo implicando em maiores diferenças de trações na parte inferior do riser.
Note que uma corrente de 0.5m

s
já é suficiente para que o cabo não esteja completamente

tensionado, situação que o modelo desenvolvido não colhe mas sugere graças a uma análise
assintótica1. Veja a figura 14 na página 79 à esse respeito.

Cabe ressaltar que o modelo misto é mais estável quanto às trações e menos
estável quanto aos deslocamentos, situação que, além de ser prevista pela teoria, pode ser
observada para todos os casos de estudo comparativo feitos.

4.1.3 Variação da magnitude do peso imerso

A figura 15 na página 80 ilustra o efeito do aumento de peso imerso da estrutura.
Mais uma vez, os restantes parâmetros das simulações são encontrados nas tabelas 2 e 3.

É possível perceber que o aumento de peso imerso incorre num abaixamento da
porção inicial de cabo e em última análise na aproximação horizontal da FPU em relação
ao TDP. Essa aproximação sugere que as deformações do cabo são de pequena magnitude
já que não suficientes a compensar esse efeito. Nas figuras 16 na página 81 são expostos os
resultados das trações ao variar dos valores de peso imerso do riser.

O aumento de peso próprio imerso incorre num aumento das trações que se verificam
ao longo do cabo. Esse é um fenômeno côngruo com o que se intui porém pode-se notar
que além disso o modelo prevê uma curva de trações que cresce mais rapidamente para
pesos maiores. Essa última constatação pode ser intuída pelo fato que o peso imerso é
distribuído e portanto cada seção subsequente deve suportar um peso sempre maior que é
integrado ao longo do comprimento do cabo.

4.1.4 Importância relativa das variações

Além das análises já conduzidas também foi feito um estudo variando a rigidez
axial do cabo. Essa etapa não foi digna de uma seção pois os efeitos macroscópicos da
resposta são minoritários se comparados àqueles das variações dos restantes fatores. Essa
relativa pouca importância tem como causa a pequena deformabilidade do cabo para

1 Diminuindo gradualmente a corrente os valores de tração se aproximam do valor nulo na porção inicial
da tubulação, diminuindo ulteriormente os cálculos se tornam instáveis e não se verifica convergência
pois o modelo introduzido da catenária não prevê compressões.

4.1. Resultados do problema global 79

(a) Tração no riser para diversos valores de magnitude de corrente com método
clássico.

(b) Tração no riser para diversos valores de magnitude de corrente com método
misto.

Figura 14: Tração no riser para diversas magnitudes de corrente.

valores de rigidez axial até 70% inferiores ao utilizado. Dessa maneira não ocorre uma
redistribuição dos deslocamentos ou uma mudança nas trações relevantes na resposta.

Com as análises feitas foi possível notar a maior sensibilidade das trações resultantes
em relação à variações de corrente na parte inferior do cabo e em relação à variações de peso
imerso na parte superior. O fato que na parte inicial de cabo as trações possuem direção

80 Capítulo 4. Resultados

(a) Perfil do riser para diversos valores de peso imerso com método clássico.

(b) Perfil do riser para diversos valores de peso imerso com método misto.

Figura 15: Perfil do riser para diversos valores de peso imerso.

horizontal e na parte superior direção vertical ajuda a entender esse comportamento.

A variação de peso também contribui de modo relevante às distribuições de tração
resultantes mudando não somente as magnitudes em questão mas também as relativas
taxas de crescimento.

As variações de comprimento do cabo se demonstraram menos relevantes na
distribuição de tração resultante porém essas variações se traduziram em mudanças

4.1. Resultados do problema global 81

(a) Tração no riser para diversos valores de peso imerso com método clássico.

(b) Tração no riser para diversos valores de peso imerso com método misto.

Figura 16: Tração no riser para diversos valores de peso imerso.

substanciais no perfil resultante. A variação de comprimento, como dito, é uma etapa
importante não somente na determinação da sensibilidade do modelo à esse parâmetro
mas também na imposição iterativa da condição de contorno de tipo contato que ocorre
no TDP.

82 Capítulo 4. Resultados

4.2 Resultados do problema axissimétrico
Nesta seção serão descritos os resultados da parcela axissimétrica do problema,

por isso uma descrição local foi feita de modo que somente uma porção pequena do
comprimento da tubulação foi levada em consideração, porção colocada em condições de
trabalho limítrofes, i.é. como se fosse a parte mais profunda da tubulação, submetida a
pressões internas e externas equivalentes às experimentadas na parte inicial do riser (perto
do TDP). As condições de contorno utilizadas para isolar os fenômenos axissimétricos dos
restantes estudados na etapa global foram a de engasgamento na extremidade inferior
e livre expansão axial na extremidade superior. Essa escolha foi feita para evitar que
expansões/contrações axiais associadas às condições de contorno não condicionem o estado
de esforço final2. Os códigos completos se encontram no apêndice A na página 1.

4.2.1 Resultados do problema de difusão de temperatura

Como dito anteriormente, a difusão de temperatura pode ser modelada como um
problema 1D simples pois, com a hipótese de isolamento perfeito, o único “carregamento”
que é dependente de z é a temperatura externa. Essa temperatura apresenta gradientes na
direção z não superiores a 0.1 ◦C

m
como pode ser observado na figura 8. Comparando esses

valores com os gradientes experimentados na direção radial (que são da ordem de 500 ◦C
m
)

pode-se concluir a baixa relevância desse efeito, que portanto pode ser desprezado.

As informações usadas na simulação se encontram na tabela 4:

Tabela 4: Dados de difusão térmica

Raio interno (Ri) - [m]: 0.12
Raio externo (Re) - [m]: 0.3

Espessura tubo interno (ti) - [m]: 0.02
Espessura tubo externo (te) - [m]: 0.018
Comprimento tubulação (L) - [m]: 5

Coeficiente de condução térmica (k) tubos interno e externo -
[
W
m.K

]
: 50

Coeficiente de condução térmica (k) isolante -
[
W
m.K

]
: 0.16

Temperatura interna [◦C]: 95
Temperatura externa 1D [◦C]: 10

Temperatura externa 2D e z ∈ [0, L] em metros [◦C]: 10+0.1z

A simulação 1D fornece a distribuição de temperatura radial vista na figura 17
na página 83, simulação conduzida com uma malha de 200 elementos e aproximação de
segunda ordem.
2 Se por exemplo as duas extremidades fossem consideradas engastadas, eventuais expansões/contrações

seriam impedidas por essas condições podendo gerar contributos de tensão axial σz exagerados e não
relacionados aos esforços axissimétricos mas sim às próprias condições de contorno.

4.2. Resultados do problema axissimétrico 83

Figura 17: Distribuição de temperatura radial: malha de 200 elementos e aproximação de
segunda ordem.

A evolução logarítmica concorda com o previsto pela solução analítica, veja (IN-
CROPERA et al., 2012). Por escrúpulo é exposto o resultado da simulação em 2D na
figura 18 que confirma a validade do modelo 1D dada a pequena variação da temperatura
externa na direção axial.

Figura 18: Distribuição de temperatura 2D: malha de 150x500 elementos e aproximação
de segunda ordem.

Note como o perfil em direção radial segue o mesmo esquema da distribuição em
1D.

84 Capítulo 4. Resultados

4.2.2 Análise estrutural em ausência do efeito térmico

Na análise estrutural em ausência do efeito térmico, a formulação variacional é
dada pela equação 3.38 na página 63 sem os termos a direita correspondentes à variação
de temperatura e aos carregamentos de volume provenientes do peso imerso. A tabela
5 apresenta os principais parâmetros para o cálculo utilizados, esses são frutos de uma
pesquisa dos valores realmente encontrados nas condições de trabalho da estrutura. A
pressão externa é dada pela pressão hidrostática da água partindo de uma profundidade
de 1500 metros e chegando a 1495 metros. A pressão interna é aproximadamente a pressão
necessária, nos 5 primeiros metros, para a propulsão a 2.5m

s
do óleo cru partindo de uma

profundidade de 1500 metros e chegando à superfície da água num eventual cenário de
inicio de operação3. O gradiente de pressão considera o efeito hidrostático e de perda de
carga no fluxo.

A extremidade inferior da tubulação foi considerada engastada e a extremidade
superior livre para translações axiais, dessa maneira é possível isolar os efeitos que decorrem
exclusivamente dos fenômenos axissimétricos.

Tabela 5: Dados para o cálculo estrutural

Módulo de Young (E) tubos interno e externo - [GPa]: 200
Módulo de Young (E) material isolante - [GPa]: 5

Coeficiente de Poisson (ν) tubos interno e externo - adimensional: 0.3
Coeficiente de Poisson (ν) material isolante - adimensional: 0.4

Pressão interna (pi) [MPa] e z ∈ [0, L] em metros: 52 - 0.0104z
Pressão externa (pe) [MPa] e z ∈ [0, L] em metros: 15 - 0.01z
Densidade (ρm) tubos interno e externo -

[
kg
m3

]
: 8000

Densidade (ρm) material isolante -
[
kg
m3

]
: 1300

Densidade (ρf) água -
[
kg
m3

]
: 1000

Aceleração da gravidade (g)
[
m
s2

]
: 10

Na fase numérica pode-se notar que a malha 2D é muito mais sensível a refinamento
na direção radial que em direção axial. Essa observação é coerente com as expectativas
vistos os grandes gradientes de esforços e de propriedades dos materiais experimentados
na direção radial em relação a direção axial.

As imagens reproduzem a solução do problema para uma malha uniformemente
distribuída pelo domínio que possui características conforme apresentado na tabela 64.
3 Para maiores informações veja (JAN et al., 2010)
4 Essas características se referem somente à parte implícita do problema, i.é. o problema nas deflexões

que deriva da formulação variacional através do método de Galerkin. As informações referentes à parte
explícita (i.é. cálculo das tensões) são omitidas já que essa etapa é muito menos onerosa.

4.2. Resultados do problema axissimétrico 85

Tabela 6: Dados da malha para a simulação sem efeitos térmicos

Número de nós: 641601
Número de elementos: 160000
Ordem de aproximação: 2

Tipo de elemento: quadrilátero
Número de graus de liberdade (dimensão do sistema linear): 1283202

Número de graus de liberdade na fronteira de Dirichlet: 1602

As deflexões na condição de trabalho imposta são côngruas com a hipótese de
pequenas deformações. A componente radial do gradiente de deslocamento radial (∂ur

∂r
)

é superior à componente axial do gradiente de deslocamento axial (∂uz
∂z

) por todo o
domínio e ambas são muito superiores à componente axial do gradiente de deslocamento
radial (∂ur

∂z
) e à componente radial do gradiente de deslocamento axial (∂uz

∂r
). Além disso,

a deformação axial do cabo é praticamente constante radialmente e axialmente, com
exceção à extremidade engastada onde se verificam variações axiais de deformação. Como
mencionado, os efeitos do engastamento são confinados às proximidades da extremidade
sendo que não geram grandes gradientes em relação àqueles já presentes em zonas distantes.
Veja a figura 19 na página 86 e a figura 20 na página 87.

As unidades de medida, se omitidas, são expostas em SI.

Mais interessante que o campo de deflexões para o estudo estrutural é o estado de
tensões, que, dada a hipótese de axissimetria, é descrito completamente pelas componentes
[σr, σz, τrz, σθ]. Essas podem ser obtidas facilmente através da seguinte equação constitutiva:


σr

σz

τrz

σθ

 =


λ+ 2µ λ 0 λ

λ λ+ 2µ 0 λ

0 0 µ 0
λ λ 0 λ+ 2µ




εr

εz

γrz

εθ

 (4.1)

Sendo o vetor das deformações relacionado às deflexões conforme a equação 3.37
na página 63.

Da figura 21 na página 87 pode-se observar, como esperado, que a tensão σr é
de compressão em todo o domínio chegando a uma amplitude máxima (≈ -52 MPa) nas
vizinhanças do raio interno. Essas tensões se abaixam, em módulo, consideravelmente ao
longo da espessura do tubo interno e aumentam somente em correspondência ao tubo
externo. Nessa figura fica evidente o efeito de proteção do material isolante por parte dos
tubos metálicos do efeito das pressões.

A componente τrz apresenta magnitude significativamente inferior às outras tensões
e não será discutida dada sua incidência marginal no estado de tensões final.

86 Capítulo 4. Resultados

(a) Deflexão radial ur em ausência do efeito térmico.

(b) Deflexão radial ur em ausência do efeito térmico na extremidade.

Figura 19: Deflexão radial ur em ausência do efeito térmico.

A tensão σz possui magnitude inferior a σr em todo o domínio e do perfil observado
na figura 22 na página 88 e de uma análise detalhada no campo de deformações se nota
que os contributos dominantes para essa tensão provém das deformações tangencial εθ e e
axial εz.

Analogamente a σz, σθ sofre influência dominante do carregamento que deriva
das pressões. Sendo a pressão interna superior, as amplitudes maiores se constatam nas
vizinhanças do raio interno. Quanto às deformações, do campo de deflexões (figura 19
na página 86) se conclui que os contributos de εθ para os esforços se concentram nas
proximidades dos raios interno e externo, com a parte interna que apresenta contributos
positivos e externa negativos. Essa deformação apresenta valores almeno uma ordem de
grandeza superiores à σr na região do raio interno e nessa zona se verificam as maiores
amplitudes de tensão tangencial. Veja a figura 23 na página 88.

É possível resumir a relação entre as tensões e deformações afirmando que a
deformação εr é a principal responsável pelo comportamento da componente σr enquanto

4.2. Resultados do problema axissimétrico 87

Figura 20: Deflexão axial uz em ausência do efeito térmico.

Figura 21: Tensão radial σr em ausência do efeito térmico.

para σθ e σz as deformações εθ e εz dominam. Das equações constitutivas se nota que
para cada uma das tensões mencionadas, a constante de proporcionalidade em relação ao
correspondente contributo de deformação dominante, é superior às restantes explicando
em parte a afirmação anterior. Contudo esse fato informa o analista que os valores das
deformações εr, εθ e εz são equiparáveis porém superiores aos valores de τrz.

Por último, toma-se a tensão de Von Mises como parâmetro do estado de tensão
local, que para o caso se escreve:

σvm =
√

1
2[(σr − σθ)2 + (σr − σz)2 + (σz − σθ)2 + 6τ 2

rz] (4.2)

Essa tensão mede o estado de tensão distorsivo e é usada como critério de resistência
para materiais dúcteis: o estado é considerado seguro se σvm ≤ σy, sendo σy a tensão de
escoamento (yielding tension).

A figura 24 na página 89 ilustra o estado de esforço usando a tensão de Von Mises
e, como esperado, a zona crítica é a vizinhança do raio interno onde pode-se verificar

88 Capítulo 4. Resultados

Figura 22: Tensão axial σz em ausência do efeito térmico.

Figura 23: Tensão tangencial σθ em ausência do efeito térmico.

valores da ordem de σvm ≈ 240 MPa.

4.2.3 Análise estrutural em presença do efeito térmico

O efeito térmico entra como forçante no sistema da elasticidade de acordo com a
equação 3.38 na página 63. Assim deve-se resolver o problema de difusão de temperatura
apresentado na seção 4.2.1 para posteriormente resolver o sistema da elasticidade e
finalmente, com o campo de deflexão conhecido, proceder ao cálculo das deformações e das
tensões, sendo que a relação constitutiva sofre uma alteração proveniente das deformações
anelásticas. A nova relação entre deformações e tensões é dada conforme a equação 4.3.

σr

σz

τrz

σθ

 =


λ+ 2µ λ 0 λ

λ λ+ 2µ 0 λ

0 0 µ 0
λ λ 0 λ+ 2µ




εr − α∆T
εz − α∆T

γrz

εθ − α∆T

 (4.3)

Para esse problema o único dado adicional em relação àqueles já apresentados nas

4.2. Resultados do problema axissimétrico 89

Figura 24: Tensão equivalente de Von Mises σvm em ausência do efeito térmico.

tabelas 4 e 5 é o coeficiente de expansão térmica α que é exposto na tabela 7.

Tabela 7: Coeficiente de expansão térmica

Coeficiente de expansão térmica (αm) tubos interno e externo -
[

1
K

]
: 13× 10−6

Coeficiente de expansão térmica (αi) isolante -
[

1
K

]
: 50× 10−6

Em relação aos resultados obtidos na simulação em ausência de efeitos térmicos,
esse caso apresenta muitas diferenças, confirmando a relevância dos efeitos térmicos: na
figura 25, por exemplo, se observa que a deflexão radial experimenta valores até duas
vezes superiores em relação ao problema sem efeitos térmicos (figura 19 na pagina 86).
Quanto às tensões, a presença do efeito térmico é suficiente a mudar consideravelmente o

Figura 25: Deflexão radial ur em presença do efeito térmico

comportamento da tensão radial σr principalmente para a região do isolante onde o maior
coeficiente de expansão térmica gera contributos de deformação anelástica consideráveis.

90 Capítulo 4. Resultados

Ainda para a tensão radial σr, o tubo interno apresenta um comportamento similar ao caso
não térmico onde a parcela dominante é dada pela deformação radial εr, que apesar de ser
menor do que a deformação tangencial εθ, não é amortecida pela contributo anelástico
quanto εθ. Além disso, pode-se observar que na porção correspondente ao tubo externo, a
tensão radial é maior em presença do efeito térmico já que a parcela anelástica entra de
maneira construtiva nas tensões de compressão.

Para a tensão tangencial σθ, o tubo interno apresenta magnitudes menores prin-
cipalmente pelas deformações anelásticas que se opõem à deformação tangencial que,
apesar dessa oposição, continua sendo dominante em σθ. Para o tubo esterno, os efeito
anelásticos intervêm em maneira construtiva com εθ que, diversamente do caso atérmico,
é ainda positivo para essa região. Essa interação resulta numa importante inversão de
comportamento entre os casos de presença e ausência dos efeitos térmicos pois não somente
muda a zona mais solicitada da estrutura mas também o tipo de solicitação (com os efeitos
térmicos o tubo externo passa a ser solicitado em tração na direção tangencial). Veja a
figura 26 na página 90.

(a) Tensão radial σr em presença do efeito térmico.

(b) Tensão tangencial σθ em presença do efeito térmico.

Figura 26: Tensão radial σr e tangencial σθ em presença do efeito térmico.

4.2. Resultados do problema axissimétrico 91

A tensão σz também verifica um relevante aumento de valores máximos quando é
incluso o efeito térmico: os fenômenos anelásticos são suficientes a inverter o tipo de esforço
solicitante na parte interna da tubulação e a aumentar consideravelmente as amplitudes do
estado de trações na parte externa. A deformação anelástica contrasta (e vence) todas as
outras na zona interna enquanto que para a parte externa se associa de maneira construtiva
a εz e a εθ. Nesse caso, σz apresenta valores da ordem de 175 MPa (tração) para a parte
externa e 80 MPa (compressão) para a parte interna. Nesse âmbito veja a figura 27 na
página 91.

Mais uma vez os esforços distorsivos τrz são desprezíveis em relação aos restantes.

Figura 27: Tensão axial σz em presença do efeito térmico.

Finalmente, analisando a tensão equivalente de Von Mises (definida na equação 4.2
na página 87) pode-se notar a importância do efeito térmico já que essa assume valores
ligeiramente inferiores para o tubo interno porém muito superiores para o tubo externo.
A zona de valores máximos passa a ser no tubo externo na vizinhança entre o isolante e
tubo (valores da ordem de 200 MPa). Nesse contexto veja a figura 28 na página 91.

Figura 28: Tensão equivalente de Von Mises σvm em presença do efeito térmico.

93

5 Discussão

A abordagem inédita utilizada no presente estudo permite uma abrangência de
grande parte dos fenômenos aos quais é submetida a estrutura em questão. Na literatura,
muitas vezes uma grande parcela dos fenômenos não é tratada e as investigações correm o
risco de resultar errôneas ou incompletas, ainda mais quando a interação dos efeitos, como
neste caso, é complexa e repleta de não-linearidades.

Os modelos considerados podem ser de utilizo para uma grande gama de confi-
gurações e situações de carregamento variando os diversos parâmetros definidos como
profundidade, pressões, geometria, propriedades dos materiais, condições externas e etc. O
trabalho foi conduzido em modo a cobrir em maneira horizontal as potencialidades dos
códigos e dos modelos evidenciando os principais pontos críticos para a geometria em
questão.

As hipóteses iniciais foram validadas a posteriori, algumas delas podem ser elencadas:
pequenas deformações para problema local, prestações numéricas dos métodos clássico e
misto, pequenas curvaturas no problema global dentre outras.

O método cooperativo desenvolvido responde a uma grande dificuldade que deriva
das não-linearidades do problema e pode ser estendido a inúmeras outras situações,
inclusive fora do âmbito do cálculo estrutural. A sua grande potencialidade está no fato de
conseguir combinar as vantagens de dois métodos consagrados como a melhor eficiência e
estabilidade do método clássico e a maior precisão do método misto. Problemas análogos
que apresentem grande dependência de escala das não-linearidades, necessidade de maior
precisão no cálculo das trações (ou de outra variável explícita para problemas que não
sejam do cálculo estrutural) e/ou dificuldades na inicialização de um método para solução
de sistemas não lineares podem potencialmente fruir da combinação de métodos utilizada
no texto.

Por fim, apesar de não ter tratado fenômenos dinâmicos por questões de espaço
e de objetivos, o design dos códigos foi concebido para permitir, com mínimos esforços
a extensão da análise a uma situação tempo-dependente. Cabe ressaltar que a escolha
operativa de não tratar os fenômenos dinâmicos deriva da menor relevância desses em
relação aos esforços estáticos tratados quanto à analise de resistência. Estudos futuros,
preocupados com o fenômeno da fadiga podem partir do presente trabalho evitando muitos
dos problemas intrínsecos já tratados. Num cenário dinâmico, apesar da introdução de novas
não-linearidades de carregamento de corrente1, provavelmente o problema apresentaria

1 Os carregamentos de corrente teriam de ser tratados com a velocidade relativa entre a corrente externa
e a velocidade local da estrutura.

94 Capítulo 5. Discussão

maior estabilidade numérica pela introdução da matriz de massa. Porém novos problemas
como de escalas de tempo seriam introduzidos abrindo novas discussões.

Voltando ao caso estático, a sobreposição dos fenômenos globais e locais foi feita
considerando que toda a tração que deriva dos carregamentos de corrente e do peso próprio
imerso da estrutura é suportada somente pela porção metálica da seção transversal e que
as tensões equivalentes são uniformemente distribuídas entre tubo interno e externo. As
tensões na parte inferior do cabo sob tais hipóteses são por volta de 20 MPa. A sobreposição
do fenômeno global pode ser vista na figura 29 na página 94 para os casos de presença e
ausência de efeitos anelásticos.

(a) Tensão equivalente de Von Mises σvm em presença do efeito térmico.

(b) Tensão equivalente de Von Mises σvm em ausência do efeito térmico.

Figura 29: Sobreposição dos efeitos globais.

Esse último resultado traz consigo algumas discussões relevantes: note como, em
relação aos estados sem os fenômenos globais nas figuras 28 na página 91 e 24 na página
89, os efeitos globais amplificam as diferenças entre os casos de presença e ausência de
efeitos anelásticos pois no caso do tubo interno, diminuem o estado de esforço para o caso
com efeito térmico e aumentam para o caso sem efeito térmico. Já no tubo esterno, para

95

ambos os casos aumentam os estados de tensões porém com uma grande diferença de
magnitude dos valores.

É interessante observar como o efeito térmico “transfere” carregamento para o tubo
externo. Apesar de não ter sido discutido o efeito da flexão, sabe-se que nas proximidades
do TDP sua participação se torna relevante e esse fenômeno torna ainda mais delicada a
mudança do ponto crítico ao tubo externo pois a flexão implica invariavelmente em valores
de tensão equivalentes muito superiores nas partes mais distantes do baricentro.

Em futuros estudos, além dos efeitos dinâmicos mencionados seria de grande
interesse a inclusão dos efeitos de flexão no modelo para delimitar o quando nos SCR (steel
catenary risers) a resistência à flexão é efetivamente desprezível. Algumas boas referências
para essa etapa se encontram em (PESCE; MARTINS; CHAKRABARTI, 2005) e em
(ARANHA; MARTINS; PESCE, 1997).

97

6 Conclusão

No presente estudo, grande parte dos fenômenos de carregamento aos quais é
submetido um riser em regime de operação foram tratados do ponto de vista da resistência
estrutural. Uma abordagem não convencional foi usada no desacoplamento do estudo
onde sob oportunas hipóteses foi possível decompor o problema em uma parte global
e em uma local. Desse modo foi possível concentrar as não-linearidades em uma fase
computacionalmente menos onerosa sem contudo perder precisão na análise.

Do ponto de vista numérico, na etapa global foi testada a eficiência de dois
métodos consagrados (mixed FEM e classic FEM) e foram validadas as hipóteses sobre as
vantagens de cada um. Ainda mais interessante foi a descoberta de como esses métodos
podem funcionar em maneira ótima se usados em maneira cooperativa em procedimentos de
refinamento de malha: dessa maneira, malhas que não exprimem convergência para ambos
os métodos se usados em modo independente, podem ser atingidas quando abordadas com
o método combinado. Desse modo foi possível resolver o problema da grande dependência
de escala das não-linearidades.

Apesar da maior complexidade de implementação da parte global do problema, os
fenômenos da parte local axissimétrica se demonstraram mais delicados e relevantes dados
seus maiores contributos ao estado final de tensões. Foi observada a complexidade da
interação entre os fenômenos e como a intuição pode falhar para situações assim complexas.
Como exemplos pode-se citar como o efeito do aumento de comprimento da estrutura pode
em última análise aliviar as trações resultantes apesar do amento do peso próprio total da
estrutura ou como um peso próprio maior pode, através de maiores amplitudes de trações,
ajudar a compensar efeitos anelásticos que derivam da distribuição de temperatura.

De qualquer maneira, a conclusão mais importante do presente estudo é sobre a
importância relativa dos efeitos anelásticos em relação aos restantes fenômenos: apesar de
serem comumente desprezados na literatura, foi possível verificar o quanto tais fenômenos
incidem na resposta final podendo levar a estado de tração tensões que seriam de compressão
e por fim podendo mudar completamente a zona mais solicitada e a distribuição final do
estado de tensões.

Os efeitos estáticos considerados são suficientes a limitar uso de grande parte
dos materiais industrialmente disponíveis pois pode-se chegar no presente caso a tensões
equivalentes de Von Mises da ordem de 200 MPa para o aço, valor muito superior ao
escoamento de muitos materiais dessa classe. Com isso o leitor pode compreender como
é delicada a projetação eficiente desse tipo de estrutura dado que os próprios custos de
material podem resultar proibitivos pelas grandes especificações de resistência.

Anexos

101

ANEXO A – Elasticidade linear estática

A.1 Equações do equilibrio
Existem duas maneiras para se obter as equações do equilíbrio intrínseco: por

equilíbrio de um elemento diferencial ou pelo axioma de Euler associado à introdução do
tensor de Cauchy. No presente texto será utilizado o segundo modo.

Axioma A.1. (Euler) Dado um corpo Ω, cada sua parte P ⊂ Ω pode ser separada do
seu complementar mediante a aparição de uma força superficial de contato.

Postulado A.1. (Cauchy) Se P ⊂ Ω é uma parte de um corpo Ω em equilíbrio, na
superfície de separação entre P e seu complementar age uma força de densidade superficial
~t dependente somente do ponto ~x e da normal à superfície ~n em ~x, i.e.

t(~x, ~n) (A.1)

Figura 30: Axioma de Euler/Postulado de Cauchy

Fonte: Poeta60 (2014, http://it.wikipedia.org/wiki/Continuo_di_Cauchy)

Em um corpo equilibrado Ω, onde agem as forças ~b e ~s respectivamente volumétrica
e superficial si há que ∀P ⊂ Ω as quantidades:

R(P) =
∫
P

~b(~x)dV (~x) +
∫
∂P

~t(~x, ~n)dA(~x) (A.2a)

102 ANEXO A. Elasticidade linear estática

M(P, ~x0) =
∫
P

(~x− ~x0) ∧~b(~x)dV (~x) +
∫
∂P

(~x− ~x0) ∧ ~t(~x, ~n)dA(~x) (A.2b)

Respectivamente resultante e momento resultante se anulam. Note que:

~t(~x, ~n) = ~s(~x) em ∂Ω (A.3)

Claramente as mesmas equações valem para o complementar de P (P c). Portanto
tem-se:

R(P) = M(P, ~x0) = 0 ∀P ⊂ Ω, ∀~x0 ∈ R3 (A.4)

Introduzindo o tensor tensão de Cauchy, assumindo dependência contínua e linear
da densidade de força superficial ~t(~x, ~n) em relação à normal ~n da superfície que divide o
corpo, de modo que:

~t(~x, ~n) = T(~x).~n (A.5)

Assim podemos deduzir as equações de equilíbrio intrínseco usando os princípios
de conservação dos momentos linear e angular e com o auxílio da fórmula de Gauss:

Teorema A.1. (Equações de Equilíbrio Intrínseco) Seja Ω um corpo em equilíbrio
sob ação das forças ~b : Ω→ R3 volumétrica e ~s : ∂Ω→ R3 superficial então, sendo T(~x) o
tensor tensão de Cauchy as equações de equilíbrio intrínseco são:

div(T(~x)) +~b(~x) = 0 se ~x ∈ Ω
T(~x).~n = ~s(~x) se ~x ∈ ∂Ω
T(~x) = Tt(~x) ∀~x ∈ Ω

(A.6)

Dem.: Uma das partições possíveis é P = Ω e nesse caso a equação (A.2a) se reduz
a ∫

Ω
~b(~x)dV (~x) +

∫
∂Ω

T(~x).~ndA(~x) = 0

Usando o teorema de Gauss no segundo adendo se obtém a:∫
Ω
~b(~x)dV (~x) +

∫
Ω
div(T(~x))dA(~x) = 0

Como o mesmo raciocínio pode ser usado para um volume de controle qualquer,
não necessariamente todo o domínio, a equação pode ser escrita na sua forma local:

div(T(~x)) +~b(~x) = 0 ∀~x ∈ Ω

Para a simetria se usa a notação de Einstein do cálculo tensorial. Seja portanto
um genérico volume de controle V ⊂ Ω e a sua correspondente fronteira ∂Ω. Denotando

A.2. Cinemática e Congruência em Pequenas Deformações 103

ainda a componente normal à superfície do tensor tensão como ~T (n) e o braço do momento
como ~r = xj~ej, a equação (A.2b) fornece:

M(P, ~x0) =
∫
V
~r ∧~b(~x)dV (~x) +

∫
∂V
~r ∧ ~t(~x, ~n)dA(~x) = 0

Que em notação tensorial se escreve:∫
V
εijk

1xjbkdV (~x) +
∫
∂V
εijkxjT

(n)
k dA(~x) = 0

Notando que T (n)
k = σmknm e usando o teorema de Gauss:

0 =
∫
V
εijkxjbkdV (~x) +

∫
∂V
εijkxjσmknmdA(~x)

=
∫
V
εijkxjbkdV (~x) +

∫
V

(εijkxjσmk),mdV (~x)

=
∫
V
εijkxjbkdV (~x) +

∫
V

(εijkxj,mσmk + εijkxjσmk,m)dV (~x)

=
∫
V
εijkxj(σmk,m + bk)dV (~x) +

∫
V
εijkxj,mσmkdV (~x),

A primeira integral se anula porque seu integrando corresponde à equação de
equilíbrio já desenvolvida, portanto resta só o segundo termo que se reduz notando que
xj,m = δj,m. Assim com a arbitrariedade do volume de controle tem-se que:

εijkσjk = 0 ∀~x ∈ Ω

Essa última corresponde em notação tensorial à condição de simetria. ♦

Em coordenadas cilíndricas as equações de equilíbrio (A.6) são:
∂σr
∂r

+ 1
r
(∂τθr
∂θ

+ (σr − σθ)) + ∂τrz
∂z

+ br = 0
∂τθr
∂r

+ 1
r
(∂σθ
∂θ

+ 2τθr) + ∂τθz
∂z

+ bθ = 0
∂τrz
∂r

+ 1
r
(∂τθz
∂θ

+ τrz) + ∂σz
∂z

+ bz = 0
(A.7)

A.2 Cinemática e Congruência em Pequenas Deformações

A.2.1 Cinemática do meio e equações de campo

Deformar um corpo significa alterar a posição relativa entre dois pontos (ou
partículas). A posição e a evolução de um ponto podem ser descritas introduzindo o vetor
deslocamento ~u(~x, t) e o vetor velocidade ~v(~x, t).

Para a descrição da cinemática se introduzem dois tipos de coordenadas:
1 Símbolo de Levi-Civita

εijk =

 +1 se (i, j, k) = (1, 2, 3) ou (2, 3, 1) ou (3, 1, 2)
−1 se (i, j, k) = (3, 2, 1) ou (2, 1, 3) ou (1, 3, 2)
0 se i = j ou i = k ou j = k

104 ANEXO A. Elasticidade linear estática

Coordenada espacial ou Euleriana ~x = (x1, x2, x3) que representa a posição de um
ponto em relação ao sistema de referência;

Coordenada material ou Lagrangeana ~A = (A1, A2, A3). Sendo o ponto P o ponto
que ocupa a posição ~x no instante t a correspondente coordenada material ~A = ~A(~x, t)
distingue a posição que P ocupava na configuração indeformada (que se convém no
instante inicial t = 0).

Das coordenadas introduzidas derivam dois modos de descrever os vetores desloca-
mento e velocidade:

Coordenada espacial ou Euleriana

~u(~x, t) = ~x− ~A(~x, t), ~v(~x, t) = D~u(~x, t)
Dt

2 (A.8)

Coordenada material ou Lagrangeana

~U(~A, t) = ~x(~A, t)− ~A, ~V (~x, t) = D~U(~A, t)
Dt

(A.9)

Neste texto se adotará a descrição Lagrangeana. Note que para essa vale a seguinte:

∂xi
∂Aj

= δij + ∂Ui
∂Aj

, dxi =
3∑
j=1

(
δij + ∂Ui

∂Aj

)
(A.10)

A.2.2 O tensor deformação

Para poder obter uma medida de deformação considera-se dois vetores passantes
pelo ponto P de coordenada genérica no estado indeformado ~A com a seguinte orientação
genérica:

~ds0 = dA1~e1 + dA2~e2 + dA3~e3 (A.11)
~ds
∗
0 = dA∗1~e1 + dA∗2~e2 + dA∗3~e3 (A.12)

No estado deformado o ponto P ocupa a posição ~x(~A, t) e os vetores genéricos
assumem a orientação, dada pelo campo de deflexão, seguinte:

~ds = dx1~e1 + dx2~e2 + dx3~e3 (A.13)
~ds
∗

= dx∗1~e1 + dx∗2~e2 + dx∗3~e3 (A.14)

Uma boa medida de deformação é dada pela quantidade:

~ds. ~ds
∗
− ~ds0. ~ds

∗
0

3 (A.15)
2 Derivada material: D~uDt = ~ut + (~u.∇)~u
3 Note que: ~ds. ~ds

∗
− ~ds0. ~ds

∗
0 = | ~ds|| ~ds

∗
| cos θ − | ~ds0|| ~ds

∗
0| cos θ0 =

∑3
i=1(dxidx∗i + dAidA

∗
i)

A.2. Cinemática e Congruência em Pequenas Deformações 105

Portanto através da (A.10) se obtém que:

dxidx
∗
i − dAidA∗i =

3∑
j,k=1

(
δij + ∂Ui

∂Aj

)(
δik + ∂Ui

∂Ak

)
dAjdA

∗
k − dAidA∗i

=
3∑

j,k=1

(
∂Ui
∂Ak

δij + ∂Ui
∂Aj

δik + ∂Ui
∂Ak

∂Ui
∂Aj

)
,

Figura 31: Deformação

Fonte: (SALSA, 2014)

Finalmente pode-se introduzir o tensor deformação E = εij com:

εij = 1
2

{
∂Ui
∂Aj

+ ∂Uj
∂Ai

+
3∑

k=1

∂Uk
∂Ai

∂Uk
∂Aj

}
i, j = 1, 2, 3 (A.16)

E então pode-se escrever:

~ds. ~ds
∗
− ~ds0. ~ds

∗
0 = 2

3∑
i,j=1

εijdAidA
∗
j (A.17)

O tensor deformação introduzido resume uma série de medidas de deformação nas
suas componentes, em seguida observe algumas dessas medidas:

• Tomando ~ds0 = ~ds
∗
0 = ds0~e1, tem-se que ~ds = ~ds

∗
(| ~ds| = ds) e substituindo na

(A.17) tem-se:
ds2 − ds2

0 = 2ε11ds
2
0 (A.18)

Usando o parâmetro γ1 = ds−ds0
ds0

de deformação longitudinal conclui-se que:

γ1 =
√

1 + 2ε11 − 1 (A.19)

Assim, com a hipótese de pequenas deformações, usando expansão de Taylor em
torno de ε11 = 0, obtém-se γ1 ≈ ε11, i.é., a componente εii representa a variação
relativa de comprimento na direção do i-ésimo eixo.

106 ANEXO A. Elasticidade linear estática

• Analogamente tomando ~ds0 = ds0~e1 e ~ds
∗
0 = ds∗0~e2 a (A.17) fornece:

dsds∗ cos θ = 2ε12ds0ds
∗
0 (A.20)

Com o auxílio da (A.18) se tem ainda que ds = (1+2ε11)ds0 e que ds∗ = (1+2ε22)ds∗0.
Portanto introduzindo o ângulo γ1,2 = π

2 −θ que é a variação de ângulo que ocorre na
deformação entre os dois vetores inicialmente perpendiculares, tal que sin γ12 = cos θ,
tem-se que:

sin γ12 = 2ε12√
1 + 2ε11

√
1 + 2ε22

(A.21)

Novamente, fazendo uma expansão de Taylor em torno a ε12 = 0 resta que γ12 ≈ 2ε12,
i.é., εij, i 6= j representa a metade da variação do ângulo entre dois vetores que são
paralelos aos eixos i-ésimo e j-ésimo no instante inicial (shear strains) .

• Por último, considera-se o Jacobiano da transformação ~A→ ~x(~A, t) que representa
a porcentagem de variação de volume após a deformação. Da equação (A.10) tem-se
que:

∂(x1, x2, x3)
∂(A1, A2, A3) = det

(
δij + ∂Ui

∂Aj

)
(A.22)

Desprezando os termos de ordem superior (pequenas deformações) tem-se que:

∂(x1, x2, x3)
∂(A1, A2, A3) = det

(
δij + ∂Ui

∂Aj

)
≈ 1 +

3∑
i=1

εii (A.23)

Se conclui que o traço do tensor deformação representa a dilatação cúbica relativa
de volume após a deformação.

A.2.3 Linearização

Para pequenas deformações o tensor deformação se simplifica pois as componentes
de ordem superior são desprezíveis, operando uma mudança de notação e observando que
para problemas estáticos em pequenas deformações as descrições Euleriana e Lagrangeana
coincidem se tem:

εij(~u) = 1
2

{
∂ui
∂xj

+ ∂uj
∂xi

}
, i, j = 1, 2, 3 (A.24)

O coeficiente de dilatação cúbica assume uma forma simplificada:

Θ =
∑
i=3

3εii(~u) = div(~u) (A.25)

Nesse caso as condições de contorno do problema tais como carregamentos ou
deflexões impostas podem ser impostas em relação ao domínio de referência (indeformado)
assim como as equações de equilíbrio desenvolvidas.

A.3. Relações constitutivas e equação de Navier 107

A.3 Relações constitutivas e equação de Navier

A.3.1 Relações constitutivas e Lei de Hooke

Na região elástica do comportamento de um material, existe uma relação linear
entre deformação e tensão, ou seja o tensor tensão é função linear do tensor deformação.
Isto quer dizer que a lei que rege o comportamento do material é do tipo:

Tij = Cijkhεkh (A.26)

Com Cijkh as componentes de um tensor de quarta ordem C. A homogeneidade do
material, se presente, garante que as componentes Cijkh sejam 81 constantes (constantes
elásticas). Com a simetria de ambos os tensores as constantes se reduzem a 21 e finalmente
com a isotropia do material4 se reduzem a duas de modo que (Lei de Hooke):

Tij = 2µεij + λδijεkk ou T = 2µE + λTr(E)I (A.27)

Onde as µ e λ são chamadas constantes de Lamé. A equação (A.27) é facilmente
inversível observando que ∑3

i=1 Tii = (2µ+ 3λ)Tr(E) pode-se obter:

εij = Tij
2µ −

λδij
2µ(2µ+ 3λ)Tkk (A.28)

Na engenharia são mais conhecidas as constantes módulo de Young E e coeficiente
de Poisson ν que são dadas pelas seguintes transformações:

E = µ(2µ+ 3λ)
µ+ λ

(A.29)

ν = λ

2(λ+ µ) ,
(

0 < ν <
1
2

)
(A.30)

E a (A.28) pode ser rescrita como:

εij = 1 + ν

E
Tij −

ν

E
δijTkk (A.31)

4 Isotropia corresponde à invariância em relação a rotações de qualquer entidade. Seja uma matriz de
rotação Q genérica; a invariância por rotação de C corresponde à:

QC[E]Qt = C[QEQt] ∀E simétrico

108 ANEXO A. Elasticidade linear estática

A.3.2 Equação de Navier

Partindo da equação (A.6), substituindo a relação (A.27) e observando que:

(∇.T)i =
3∑
j=1

∂Tij
∂xj

= µ
3∑
j=1

∂

∂xj

{
∂ui
∂xj

+ ∂uj
∂xi

}
+ λ

∂

∂xi
div(~u)

= µ∆ui + (µ+ λ) ∂

∂xi
div(~u),

Pode-se obter a equação de Navier :

µ∆~u+ (µ+ λ)∇div(~u) +~b = 0 ∀~x ∈ Ω (A.32)

Usando a identidade:

rot(rot(~F)) = ∇div(~F)−∆~F

A equação de Navier pode ser rescrita como:

(2µ+ λ)∇div(~u)− µrot(rot(~u)) +~b = 0 ∀~x ∈ Ω (A.33)

E finalmente pondo em evidência as constantes de Young e Poison:

E

2(1 + ν)

(
∆~u+ 1

1− 2ν∇div(~u)
)

+~b = 0 ∀~x ∈ Ω (A.34)

109

ANEXO B – Complementos de análise funci-
onal

Neste complemento de texto são considerados alguns elementos de análise funcional
extensivamente usados no corpo do texto. Para o leitor que não tem familiaridade com a
análise funcional a leitura sequencial deste capítulo pode ser exaustiva pois é muito densa
de conceitos que à primeira vista parecem muito abstratos, no entanto essa abstração
intrínseca da análise funcional é a responsável pelo seu sucesso pois permite uma visão
panorâmica de uma grande classe de problemas.

Um exemplo de aplicação dos conceitos enumerados está na própria monografia e
possivelmente a melhor maneira de fruir deste complemento é uma leitura paralela com o
corpo principal.

Para o leitor interessado, textos mais completos podem ser encontrados em (SALSA,
2010), (YOSIDA, 1974), (ADAMS, 1975).

B.1 Espaço Normado, de Banach e de Hilbert

Definição B.1. Um espaço normado X é um espaço linear em R t.q. existe uma aplicação
chamada norma ||.|| : X→ [0,∞) que verifica as três seguintes propriedades:

i ||x|| = 0 ⇐⇒ x = 0 (anulamento);

ii ||λx|| = |λ|||x|| ∀λ ∈ R, ∀x ∈ X (homogeneidade);

iii ||x+ y|| ≤ ||x||+ ||y|| ∀x, y ∈ X (inequação triangular);

Observação Uma norma define naturalmente uma noção de distância em um
espaço normado: d(x, y) = ||x− y|| = ||y − x||.

Note que essa série de conceitos servirá para atribuir a um conjunto de funções
uma estrutura ao quanto similar à estrutura familiar dos espaços Rn, onde noções de
norma, ângulo e distância são intuitivas.

Exemplo Em Rn, seja p ∈ [0,∞) então normas possíveis são ||x|| =
(∑n

i=1 |xi|p
) 1
p

.

Exemplo Em C([a, b]) (espaço linear1 de funções contínuas no intervalo [a, b]) uma
norma possível é ||f || = maxt∈[a,b] |f(t)|.
1 ∀α, β ∈ R (αf + βg)(t) = αf(t) + βg(t) ∀t ∈ [a, b], ∀f, g ∈ C([a, b])

110 ANEXO B. Complementos de análise funcional

Observação Uma sequência de elementos de um espaço normado {xi}i∈N é dita
convergente se ∃x ∈ X : limi→∞ ||xi − x||X = 0.

Definição B.2. Um espaço de Banach X é um espaço normado t.q. toda sequência de
Cauchy2 é convergente.

Exemplo Em Ck([a, b]) espaço linear de funções contínuas e deriváveis k vezes com
continuidade no intervalo [a, b], a norma ||f || = ∑k

j=0 maxt∈[a,b] |f (j)(t)| o faz um espaço de
Banach.

Finalmente pode-se introduzir o conceito de espaço de Hilbert que traz consigo o
conceito de ângulo entre elementos. Mas antes note a definição seguinte:

Definição B.3. Seja um espaço linear H. Um produto interno ou escalar é uma aplicação
bilinear, simétrica e definida positiva de H×H em R i.é. uma função

(., .) : H×H→ R

que possui as seguintes propriedades:

i (x, x) = 0 ⇐⇒ x = 0 (anulamento);

ii (αx+ y, z) = α(x, z) + (y, z) ∀x, y, z ∈ H, ∀α ∈ R (linearidade);

iii (x, y) = (y, x) ∀x, y ∈ H (simetria);

iv ∀x ∈ H (x, x) ≥ 0 (positividade);

Das propriedades ii e iii se conclui a bilinearidade.

Definição B.4. Seja um espaço linear equipado de um produto interno. Esse é dito de
Hilbert se a norma induzida por tal produto interno (||x|| =

√
(x, x)) faz do espaço um

espaço de Banach ou completo.

Proposição B.1. Vice-versa, um espaço de Banach H é de Hilbert se a sua norma satisfaz
a regra do paralelogramo:

||x+ y||2 + ||x− y||2 = 2||x||2 + 2||y||2 (B.1)

Nesse caso o produto interno induzido pela norma é:

(x, y) = 1
2
[
||x+ y||2 − ||x||2 − ||y||2

]
(B.2)

2 {xi}i∈N é de Cauchy se limn,m→∞ ||xn − xm||X = 0

B.2. Funcionais e formas bilineares 111

Exemplo Um exemplo de espaço de Hilbert é o espaço funcional de funções a
quadrado somável, essas funções são denotadas pelo símbolo L2(Ω) onde Ω é o domínio de
referência:

L2(Ω) =
{
f : Ω→ R :

∫
Ω

(f(~x))2dΩ < +∞
}

(B.3)

Esse espaço equipado com o produto escalar (f, g) =
∫

Ω f(~x)g(~x)dΩ e consequente-
mente com norma induzida ||f ||L2

Ω
=
√∫

Ω(f(~x))2dΩ é de Banach.

Exemplo Analogamente ao espaço funcional anterior pode-se introduzir o espaço
genérico Lp(Ω) com p ∈ [1,∞]. Esses espaços são de Banach com a norma ||f ||LpΩ =
(
∫

Ω(f(~x))pdΩ)
1
p para o caso p ∈ [1,∞) e ||f ||L∞Ω = esssup~x∈Ω|f(~x)|3, no entanto essas

normas não induzem um produto escalar e portanto esses espaços não são de Hilbert.

B.2 Funcionais e formas bilineares

Definição B.5. Dado um espaço funcional V, um funcional é uma aplicação sobre V
com imagem em R, i.é.:

F : V→ R

Um funcional é dito linear se:

F (λu+ γv) = λF (u) + γF (v) ∀u, v ∈ V, ∀λ, γ ∈ R (B.4)

Um funcional é dito limitado se:

∃C ≥ 0 : |F (u)| ≤ C||u|| ∀u ∈ V (B.5)

Uma notação comumente usada é F (u) ou 〈F, u〉, note que, para operações de
produto escalar, de funcionais e de norma pode ser necessária a especificação do espaço no
qual se efetua a operação com o objetivo de evitar ambiguidades, por exemplo pode ser
necessário usar a notação (u, v)H , 〈F, v〉H e ||u||H .

Observação Um funcional limitado e linear que age sobre um espaço de Banach é
também contínuo já que: ||xn−x|| → 0 =⇒ |F (xn)−F (x)| = |F (xn−x)| ≤ C||xn−x|| → 0

Pode-se definir o espaço dual (denotado com V′) de um espaço de Banach V
composto de funcionais lineares e limitados sobre V i.é:

V′ = {F : V→ R : F é linear e limitado } (B.6)
3 esssup denota o estremo superior essencial de uma função, i.é., o mínimo valor M para o qual a

medida da união de pontos ~x t.q. |f(~x)| > M seja nula. Ver (RUDIN, 1986) para teoria de medidas e
análise real.

112 ANEXO B. Complementos de análise funcional

Tal espaço é de Banach se dotado da seguinte norma:

||F ||V ′ = sup
v∈V \{0}

|F (v)|
||v||V

(B.7)

O seguinte é um resultado muito importante da análise funcional:

Teorema B.1. representação de Riez Seja H um espaço de Hilbert equipado de produto
escalar (., .)H . Para todo funcional linear e limitado F de H′ existe um único elemento
xF ∈ H tal que seja válida a:

F (y) = (xF , y)H ∀y ∈ H (B.8)

Reciprocamente, todo elemento x ∈ H identifica um único funcional linear Fx de
H′ tal que:

Fx(y) = (x, y)H ∀y ∈ H (B.9)

Em ambos os casos essa identificação é uma isometria, i.é.:

||Fx||H′ = ||x||H e ||F ||H′ = ||xF ||H (B.10)

Do teorema (B.1) se deduz que existe uma transformação bijetiva e isométrica entre
um espaço de Hilbert e seu dual, essa aplicação é chamada mapa de Riez e a denotaremos
com RH : H→ H′ . Note que:

RH(x) = Fx (B.11a)

R−1
H (F) = xF (B.11b)

Exemplo Um exemplo de funcional linear e contínuo para um espaço do tipo
Lp(Ω) é F (f) =

∫
Ω f(~x).g(~x)dΩ com g ∈ Lq(Ω) e 1

p
+ 1

q
= 1. Esse resultado deriva

(quanto limitação do funcional) de uma propriedade dos espaços Lp muito importante dita
desigualdade de Hölder :

Proposição B.2. Desigualdade de Hölder Sejam p, q ∈ [1,∞] dois expoentes conju-
gados, i.é., que satisfazem 1

p
+ 1

q
= 1. Sejam ainda as funções f ∈ Lp(Ω) e g ∈ Lq(Ω) então

vale a seguinte desigualdade:
∣∣∣∣ ∫

Ω
f.gdΩ

∣∣∣∣ ≤ (∫
Ω
fpdΩ

) 1
p
(∫

Ω
gqdΩ

) 1
q

(B.12)

Ou em modo sucinto:

||f.g||L1 ≤ ||f ||Lp||g||Lq (B.13)

B.2. Funcionais e formas bilineares 113

Continuando o exemplo anterior, não só F é um exemplo de funcional como se
pode demonstrar que todos os funcionais de Lp(Ω) possuem essa forma para p ∈ [1,∞),
i.é. pode-se identificar4 o espaço (Lp(Ω))′ (dual de Lp(Ω)) com o espaço Lq(Ω). O abuso
de linguagem seguinte é usual: Lq(Ω) é o dual de Lp(Ω).

Ainda no âmbito do exemplo anterior note que no caso especial L2(Ω), seu dual é
ele mesmo e daí um exemplo do teorema (B.1).

A esse ponto é possível proceder ao conceito de forma:

Definição B.6. Dado um espaço funcional normado V, uma forma é uma aplicação a(., .)
que associa a cada par de elementos de V, um número real, i.é:

a : V×V→ R (B.14)

Uma forma é bilinear se vale:

a(λu+ γw, v) = λa(u, v) + γa(w, v) ∀λ, γ ∈ R, ∀u, v, w ∈ V,

a(u, γw + λv) = γa(u,w) + λa(u, v) ∀λ, γ ∈ R, ∀u, v, w ∈ V;
(B.15)

Uma forma é contínua se ∃M > 0 t.q. seja válida:

|a(u, v)| ≤M ||u||V ||v||V ∀u, v ∈ V; (B.16)

Uma forma é simétrica se vale:

a(u, v) = a(v, u) ∀u, v ∈ V; (B.17)

Uma forma é positiva se vale:

a(u, u) > 0 ∀u 6= 0 ∈ V; (B.18)

Uma forma é coerciva se ∃α > 0 t.q. seja válida:

a(u, u) ≥ α||u||2V ∀u ∈ V; (B.19)

Para finalizar a seção é introduzido o conceito de tripla Hilbertiana mas antes note
a seguinte definição:

Definição B.7. Sejam H,V dois espaços de Hilbert. É dito que V é contido e imerso
com continuidade em H (notação V ↪→ H) se existe uma constante M > 0 t.q. ||u||H ≤
M ||u||V ∀u ∈ V.

É dito que V é denso em H se ∀u ∈ H ∃ uma sequência {un}n∈N un ∈ V ∀n ∈ N
t.q. ||un − u||H → 0. Em palavras V é denso em H se para todo elemento u de H existe
uma sucessão de V que aproxima u em norma H arbitrariamente bem.
4 Identificar pois se demonstra facilmente que além da correspondência ser bijetiva se tem que
||Fg||(Lp)′ = ||g||Lq mas o funcional é dado pela associação de g com a integral no domínio Ω.

114 ANEXO B. Complementos de análise funcional

Observação O conceito de densidade pode ser entendido através dos números
racionais Q e números reais R: para todo ε > 0 e para todo número real r existe um
número racional an arbitrariamente próximo de r, ou seja |an − r| < ε. O conceito de
densidade pode ser estendido para espaços funcionais (que contrariamente aos espaços Rn,
são infinito dimensionais).

Definição B.8. Sejam H,V dois espaços de Hilbert com V ↪→ H com densidade, então
H′

↪→ V′ e a tripla Hilbertiana é dada pela

V
denso
⊂ H Riez≡ H′ denso⊂ V′ (B.20)

B.3 Diferenciação em espaços lineares
Nesta seção são expostos brevemente os conceitos de derivação em espaços funcionais

lineares, para uma descrição mais detalhada veja (KOLMOGOROV; FOMIN, 1999).

Definição B.9 (Derivada forte ou de Fréchet). Sejam dois espaços normados X e Y e F
uma aplicação de X em Y , definida em um conjunto aberto E ⊂ X. Essa aplicação é dita
diferenciável em x ∈ E se existe um operador linear limitado Lx : X → Y para o qual seja
válida a seguinte:

∀ ε > 0,∃ δ > 0 : ||F (x+h)−F (x)−Lx(h)||Y ≤ ε||h||X ∀h ∈ X : ||h||X < δ (B.21)

A Lx(h) (que é um elemento de Y) é dita diferencial forte ou de Fréchet de F
avaliada em x ∈ E na direção h. O operador Lx é dito derivada forte de F e é indicado
com F ′(x).

Outro conceito importante é o seguinte:

Definição B.10 (Derivada fraca ou de Gâteaux). Sejam dois espaços normados X e Y
e F uma aplicação de X em Y . O diferencial fraco ou de Gâteaux de F em x é o limite
(não sempre existente):

DF (x;h) = lim
t→0

F (x+ th)− F (x)
t

∀h ∈ X (B.22)

Com t ∈ R e a igualdade entendida como
∣∣∣∣∣∣DF (x;h)− limt→0

F (x+th)−F (x)
t

∣∣∣∣∣∣
Y

= 0.
Se o operador DF (x;h) é linear, pode ser escrito DF (x, h) = F ′(x)[h] e nesse caso F ′(x)
é a derivada fraca ou de Gâteaux.

B.4 Distribuições
As distribuições são uma extensão do conceito de função. A teoria foi criada com o

propósito de manipular singularidades que se encontram em diversas aplicações: a delda
de Dirac é um exemplo de distribuição como será visto adiante.

B.4. Distribuições 115

Antes de poder definir o conceito de distribuição deve-se ter em mente alguns
conceitos que vêem apresentados a seguir:

Seja Ω um conjunto aberto de Rn e f : Ω→ R.

Definição B.11. O suporte de uma função f é o menor subconjunto fechado do conjunto
de pontos onde a função assume valor não nulo, i.é:

suppf = {~x : f(~x 6= 0)}5 (B.23)

Definição B.12. Uma função f : Ω→ R é dita a suporte compacto em Ω se existe um
conjunto compacto6 K ⊂ Ω t.q. suppf ⊂ K.

Pode-se agora dar a seguinte definição:

Definição B.13. D(Ω) é o espaço das funções infinitamente deriváveis e com suporte
compacto em Ω, i.é:

D(Ω) = {f ∈ C∞(Ω) : ∃K ⊂ Ω, compacto : suppf ⊂ K} (B.24)

Para facilidade de leitura é introduzida a notação multi-indices conforme segue:
seja α = (α1, α2, . . . , αn) uma sequência de números naturais não negativos, então seja
f : Ω→ R, com Ω ⊂ Rn então usa-se a seguinte notação:

Dαf(~x) = ∂|α|f(~x)
∂α1x1∂α2x2 . . . ∂αnxn

Com |α| = ∑n
i=1 αi.

O espaço D(Ω) é também conhecido como espaço de funções teste. Neste espaço
não é possível introduzir uma norma que o faça um espaço de Banach no entanto é possível,
mesmo na ausência de norma introduzir uma convergência adequada:

Definição B.14. Dada uma sequência {φk}k∈N de funções de D(Ω), então essa é conver-
gente a uma função φ de D(Ω) (φk −→ φ em D(Ω)) se:

i O suporte das funções φk são todos contidos em um dado compacto K ⊂ Ω;

ii Dαφk −→ Dαφ uniformemente 7 ∀α ∈ Nn;

Com esses conceitos é possível dar a definição de distribuição:
5 A notação A significa o menor conjunto fechado que contém A, por exemplo (a, b) = [a, b].
6 Ω ⊂ Rn é dito compacto se é fechado e limitado
7 φk −→ φ uniformemente se |φk(~x)− φ(~x)| k→∞−→ 0 ∀~x ∈ Ω

116 ANEXO B. Complementos de análise funcional

Definição B.15. O espaço das distribuições é o conjunto de funcionais lineares e con-
tínuos8 sobre D(Ω). Em outras palavras, o espaço das distribuições é o dual de D(Ω),
denotado com D′(Ω).

Pede-se ao leitor que não se desmotive com a quantidade de conceitos matemáticos
introduzidos: a análise funcional parece sempre à primeira vista um instrumento sem fins
práticos mas a realidade é que grande parte das aplicações modernas científicas necessitam
dessa ferramenta para uma compreensão completa.

Exemplo Como dito anteriormente, a delta de Dirac é uma distribuição e a sua
ação como funcional sobre uma função teste é a seguinte: seja a ∈ Ω então a correspondente
delta δa age da seguinte maneira: 〈δa, φ〉 = φ(a) ∀φ ∈ D(Ω).

A este ponto nos falta definir uma noção de convergência para D′(Ω):

Definição B.16. Uma sequência de distribuições {Tk}k∈N converge em D′(Ω) a uma
distribuição T de D′(Ω) se

lim
k→∞
〈Tk, φ〉 = 〈T, φ〉 ∀φ ∈ D(Ω) (B.25)

Exemplo Note que para toda função f ∈ L2(Ω) é possível associar uma distribuição
Tf ∈ D

′(Ω) t.q. a sua ação em D(Ω) seja:

〈Tf , φ〉 =
∫

Ω
fφdΩ ∀φ ∈ D(Ω)

Será visto que o contrário não é verdadeiro, i.é, existem distribuições que não possuem
uma correspondente função em L2(Ω) (δ delta de Dirac é uma delas9) no entanto vale o
seguinte lema:

Lema B.1. O espaço D(Ω) é denso em L2(Ω).

E graças a esse lema é possível demonstrar que:

L2(Ω) ⊂ D′(Ω) (B.26)

A teoria das distribuição permite definir um novo tipo de derivada chamado derivada
distribucional que generaliza o conceito de derivada:
8 Note que o conceito de continuidade em D(Ω) não coincide com o de limitação (pois D(Ω) não é

espaço de Banach): Um funcional contínuo T sobre D(Ω) satisfaz ∀{φk} convergente se tem:

φk −→ φ em D(Ω) =⇒ lim
k→∞

〈T, φk〉 = 〈T, φ〉

9 ∫
Ω δ

2dΩ =∞

B.4. Distribuições 117

Seja portanto T ∈ D′(Ω) com Ω ⊂ Rn. A derivada distribucional de T é a
distribuição T ∗ que indicaremos com T ∗ = ∇T ∈ D′(Ω;Rn) que satisfaz o teorema da
divergência de Gauss:

〈∇T, φ〉 = −〈T, divφ〉 ∀φ ∈ D(Ω;Rn)10 (B.27)

Em outras palavras:

〈 ∂T
∂xi

, φ〉 = −〈T, ∂φ
∂xi
〉 ∀φ ∈ D(Ω), i = 1, 2, . . . , n (B.28)

Do mesmo modo são definidas as derivadas de ordem superior:

Definição B.17. Para todo multi-indice α = (α1, α2, . . . , αn) é sempre definida, i.é existe
sempre, a derivada distribucional de T ∈ D(Ω) conforme a seguinte:

〈DαT, φ〉 = (−1)|α|〈T,Dαφ〉 ∀φ ∈ D(Ω) (B.29)

Exemplo Note que a função de Heaviside χ(0,∞] =

 0 se x ≤ 0
1 se x > 0

não é derivável

em modo clássico pois apresenta uma singularidade. No entanto essa função pode ser
derivada distribucionalmente:

〈dχ
dx
, φ〉 = −〈χ, dφ

dx
〉 = −

∫ +∞

−∞
χ
dφ

dx
dx = −

∫ +∞

0

dφ

dx
dx = − lim

x→∞
φ(x) + φ(0) =

φ tem suporte compacto= φ(0) = 〈δ0, φ〉 ∀φ ∈ D(R)

Note as seguintes propriedades válidas no âmbito da derivada distribucional que
não são válidas para derivadas clássicas.

i Toda distribuição é infinitamente derivável distribucionalmente;

ii Se Tn −→ T em D′(Ω), n→∞ =⇒ DαTn −→ DαT em D′(Ω), n→∞, ∀α ∈ N,
ou seja a derivação distribucional é uma operação contínua em D′(Ω);

Observação Caso uma função f possua derivada clássica, a derivada distribucional
da distribuição Tf que identifica f em sua ação, corresponde à distribuição que identifica
f
′ . Em outras palavras usando um abuso de linguagem: a derivada distribucional coincide

com a clássica caso essa segunda exista.

10 D(Ω;Rn) = {φ = [φ1, φ2, . . . , φn] : φi ∈ D(Ω)}

118 ANEXO B. Complementos de análise funcional

B.5 Espaços de Sobolev
Como visto anteriormente, as funções de L2(Ω) são também distribuições, mas isso

não significa que as suas derivadas distribucionais sejam elementos de L2(Ω). A própria
função χ[a,b] está em L2([a, b]) mas a sua derivada distribucional δa − δb não pertence a tal
espaço. Os espaços de sobolev são definidos nesse contexto:

Definição B.18. Seja Ω ⊂ Rn aberto e k um número natural positivo. Espaço de Sobolev
de ordem k sobre Ω (Hk(Ω)) é definido como o espaço formado de funções de L2(Ω) que
possuem todas derivadas distribucionais até a ordem k ainda elementos de L2(Ω), i.é:

Hk(Ω) = {f ∈ L2(Ω) : Dαf ∈ L2(Ω), ∀α ∈ Nn : |α| ≤ k} (B.30)

Note que vale a seguinte imersão Hk+1(Ω) ⊂ Hk(Ω) k ≥ 0. Identificando o espaço
L2(Ω) com H0(Ω).

Os espaços de Sobolev são di Hilbert se dotados do seguinte produto escalar:

(f, g)Hk(Ω) =
∑
|α|≤k

∫
Ω

(Dαf)(Dαg)dΩ (B.31)

Que por sua vez induz a seguinte norma:

||f ||Hk(Ω) =
√

(f, f)Hk(Ω) =
√√√√∑
|α|≤k

∫
Ω

(Dαf)2dΩ (B.32)

Pode-se ainda definir as seguintes seminormas11:

|f |Hk(Ω) =
√√√√∑
|α|=k

∫
Ω

(Dαf)2dΩ (B.33)

Dessa maneira pode-se simplificar a equação (B.32):

||f ||Hk(Ω) =

√√√√ k∑
m=0
|f |2Hm(Ω) (B.34)

Exemplo Note que nem todas as funções presentes em espaços de Sobolev são
contínuas: seja Ω = {(x, y) ∈ R2 : x2 +y2 ≤ 1} ou seja a área delimitada pela circunferência

de raio 1, então a função f(x, y) =
∣∣∣∣ln 1√

x2+y2

∣∣∣∣k pertence à H1(Ω) (verifique que as integrais
do seu quadrado em Ω e do quadrado do seu gradiente em Ω são finitas) no entanto essa
função possui uma singularidade na origem e portanto não é contínua em Ω.

Apesar disso é possível derivar uma relação entre espaços de funções contínuas e
de funções em espaços de Sobolev:
11 Possui todas as propriedades de norma menos o anulamento.

B.5. Espaços de Sobolev 119

Teorema B.2. Imersão de Sobolev Seja Ω um subconjunto aberto de Rn. Então se a
fronteira de Ω (∂Ω) é “suficientemente regular”12, então:

Hk(Ω) ⊂ Cm(Ω) se k > m+ n

2 (B.35)

Note que para uma dimensão (n = 1) as funções de H1([a, b]) pertencem também
a C0(Ω) e portanto são contínuas. Já em duas dimensões, é necessário que f esteja em
H2(Ω) para garantir a continuidade.

Uma última observação para o caso das funções deH1(Ω) que se anulam na fronteira
do domínio (H1

0 (Ω)) ou em parte do mesmo (H1
ΓD = {f ∈ H1(Ω) : f(~x) = 0∀~x ∈ ΓD})

vale o seguinte resultado:

Proposição B.3. Para as funções de H1
ΓD a seminorma de H1(Ω) é equivalente13 à sua

norma pois vale a seguinte desigualdade de Poincaré:

||v||L2(Ω) ≤ CΩ|v|H1(Ω) ∀v ∈ H1
ΓD (B.36)

A desigualdade de Poincaré vale para outros casos, um caso importante para o
texto é o espaço das funções de H1(Ω) a média nula (H1∫ = {v ∈ H1(Ω) :

∫
Ω vdΩ = 0}).

12 De modo heurístico, a regularidade de uma fronteira é medida pela derivabilidade do gráfico gerado
por essa com um sistema cartesiano colocado em pontos da própria fronteira e pela propriedade do
domínio de estar sempre de um só lado da fronteira

13 Duas normas são equivalentes em um espaço funcional X se ∃c > 0, C > 0 constantes: c||x||X ≤
||x||Y ≤ C||x||X ∀x ∈ X.

121

Referências

ADAMS, R. A. Sobolev Spaces. New York: Academic Press, 1975. Citado na página 109.

ARANHA, J. A. P.; MARTINS, C. A.; PESCE, C. P. Analytical approximation for the
dynamic bending moment at the touchdown point of a catenary riser. International
Journal of Offshore and Polar Engineering, p. 293–300, 1997. Citado na página 95.

BATH, K.-J. Finite Element Procedures. [S.l.]: Prentice-Hall, 1996. Citado na página 30.

BERGMAN, J. Temperature of ocean water. Webpage. Disponível em: <http://www-
.windows2universe.org/earth/Water/temp.html>. Acesso em: 11 ago. 2014. Citado na
página 60.

BREDERO Shaw. 2014. Webpage. Disponível em: <http://www.brederoshaw.com-
/solutions/images/illustration pip.jpg>. Acesso em: 04 ago. 2014. Citado na página
22.

CORIGLIANO, A.; TALIERCIO, A. MECCANICA COMPUTAZIONALE. [S.l.]:
Esculapio, 2005. Citado na página 30.

CPLUSPLUS.COM. 2014. Webpage. Disponível em: <http://www.cplusplus.com-
/reference/>. Acesso em: 8 ago. 2014. Citado na página 66.

DEVELOPERS libMesh. libmesh. 2014. Webpage. Disponível em: <http://libmesh.github-
.io>. Acesso em: 20 out. 2014. Citado na página 67.

GELFAND, I. M.; FOMIN, S. V. Calculus of Variations. [S.l.]: Dover Publications, 2000.
Citado na página 43.

OFFSHORE TECHNOLOGY CONFERENCE, 2002, Houston. Optimized Design of
Pipe-in-Pipe Systems. Houston: DeepSea Engineering Management Ltd, 2002. Citado na
página 23.

INCROPERA et al. Fundamentals of Heat and Mass Transfer. [S.l.]: Wiley, 2012. Citado
na página 83.

IRVINE, H. M. Cable Structures. [S.l.]: MIT press, 1981. Citado na página 37.

JAN, K. et al. Ultra high-pressure risers for deepwater drilling. 2010. Disponível
em: <http://www.offshore-mag.com/articles/print/volume-70/issue-3/drilling-
completion/ultra-high-pressure-risers-for-deepwater-drilling.html>. Citado na página

84.

KOLMOGOROV, A. N.; FOMIN, S. Elements of the Theory of Functions and Functional
Analysis. [S.l.]: Dover Publications, 1999. Citado na página 114.

KOLMOGOROV, A. N.; FOMIN, S. V. Introductory Real Analysis. [S.l.]: Prentice-Hall,
1970. Citado na página 27.

http://www.windows2universe.org/earth/Water/temp.html
http://www.windows2universe.org/earth/Water/temp.html
http://www.brederoshaw.com/solutions/images/illustration_pip.jpg
http://www.brederoshaw.com/solutions/images/illustration_pip.jpg
http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/
http://libmesh.github.io
http://libmesh.github.io
http://www.offshore-mag.com/articles/print/volume-70/issue-3/drilling-__completion/ultra-high-pressure-risers-for-deepwater-drilling.html
http://www.offshore-mag.com/articles/print/volume-70/issue-3/drilling-__completion/ultra-high-pressure-risers-for-deepwater-drilling.html

122 Referências

KYRIAKIDES, S. Buckle propagation in pipe-in-pipe systems. part i. experiments.
Pergamon, International Journal of Solids and Structures, n. 39, p. 351–366, 2002. Citado
na página 23.

KYRIAKIDES, S.; VOGLER, T. J. Buckle propagation in pipe-in-pipe systems. part ii.
analysis. Pergamon, International Journal of Solids and Structures, n. 39, p. 367–392,
2002. Citado na página 23.

LANGPOP.COM. Normalized Comparison. 2014. Webpage. Disponível em:
<http://langpop.com>. Acesso em: 08 ago. 2014. Citado na página 67.

MONTANO, A.; RESTELLI, M.; SACCO, R. Numerical simulation of tethered buoy
dynamics using mixed finite elements. ELSEVIER, Computer Methods in Applied
Mechanics Engineering, n. 196, p. 4117–40129, 2007. Citado na página 50.

OPEN MPI - Message Passing Interface. 2014. Webpage. Disponível em: <http://www-
.open-mpi.org/>. Acesso em: 18 set. 2014. Citado na página 66.

PESCE, C. P.; MARTINS, C. A.; CHAKRABARTI, S. Numerical Modelling in
Fluid-Structures Interactions: Numerical computational of riser dynamics. [S.l.]: WIT
PRESS, 2005. p. 253-309 p. Citado 4 vezes nas páginas 21, 41, 74 e 95.

PETSC - Portable Extensible Toolkitfor for Scientific Computation. 2014. Webpage.
Disponível em: <www.mcs.anl.gov/petsc/>. Acesso em: 20 set. 2014. Citado na página
66.

POETA60. Continuo di Cauchy. 2014. Webpage. Disponível em: <http://it.wikipedia-
.org/wiki/Continuo di Cauchy>. Acesso em: 28 jul. 2014. Citado na página
101.

PRATA, S. C++ Primer Plus. 6. ed. [S.l.]: Addison-Wesley, 2012. Citado na página 66.

QUARTERONI, A. Modellistica numerica per problemi differenziali. 4. ed. [S.l.]: Springer,
2008. Citado na página 35.

RUDIN, W. Real and Complex Analysis. [S.l.]: McGraw-Hill, 1986. Citado na página 111.

RUDIN, W. FUNCTIONAL ANALYSIS. [S.l.]: McGraw-Hill, Inc., 1991. Citado na
página 27.

SACCO, R. AN INTRODUCTION TO MIXED AND HYBRID FINITE ELEMENT
METHODS IN COMPUTATIONAL FLUID-MECHANICS. [S.l.], 2007. Citado na
página 51.

SALSA, S. Equazioni a derivate parziali - Metodi, modelli e applicazioni. 2. ed. [S.l.]:
Springer, 2010. Citado 2 vezes nas páginas 27 e 109.

SALSA, S. Elasticità lineare. [S.l.], 2014. Citado na página 105.

SANTOS, H. A. F. A.; ALMEIDA, C. I. On a pure complementary energy principle
and a force-based finite element formulation for non-linear elastic cables. ELSEVIER,
International Journal of Non-Linear Mechanics, n. 46, p. 395–406, 2011. Citado na
página 37.

http://langpop.com
http://www.open-mpi.org/
http://www.open-mpi.org/
http://it.wikipedia.org/wiki/Continuo_di_Cauchy
http://it.wikipedia.org/wiki/Continuo_di_Cauchy

Referências 123

VIEIRA, P. A practical introduction to finite element programming using libMesh. [S.l.],
2009. Disponível em: <http://ptmat.fc.ul.pt/˜pvieira/libmesh/>. Citado na página 67.

YOSIDA, K. Functional Analysis. [S.l.]: Springer-Verlag, 1974. Citado na página 109.

http://ptmat.fc.ul.pt/~pvieira/libmesh/

Apêndices

1

APÊNDICE A – Códigos

Os códigos são organizados em duas partes com três códigos para cada uma.

Na primeira parte são expostos os códigos do problema local: o primeiro é o código
do problema da difusão de temperatura, o segundo o problema estrutural em ausência dos
efeitos térmicos e o terceiro a junção dos dois problemas. Note que no terceiro código a
parte correspondente ao problema de difusão é exatamente igual ao primeiro código. Para
o problema estrutural é presente uma parcela de carregamento a mais na solução do campo
de deflexões e uma parcela de deformação anelástica que entra no cálculo das tensões.
Ambos esses novos fatores são computados a partir da distribuição de temperatura que
provém da solução do problema de difusão.

Na segunda parte são expostos os códigos referentes à etapa global: no primeiro
é presente a implementação do header das classes desenvolvidas com os protótipos de
todas as funções e métodos principais, no segundo são definidos os métodos e funções e os
algoritmos principais e no terceiro é presente um possível exemplo de um main que utilize
as classes desenvolvidas.

Como INPUTS dinâmicos o problema local possui somente parâmetros numéricos
como a dimensão do problema, o tipo resolutor dos sistemas lineares, a ordem de apro-
ximação (primiera ou segunda) e o número de processores a serem utilizados no caso de
paralelização. Esses parâmetros são configurados diretamente da linha de comando no
lançamento do executável.

A parte global, além dos parâmetros numéricos já mencionados possui outros
referentes ao método de Newton como tolerâncias e número máximo de iterações a ser
ajustados diretamente da linha de comando. Além disso, o executável também precisa
de um file chamado “data_input.txt” onde é feita a leitura dos parâmetros físicos do
problema (comprimento do cabo, velocidade de corrente, etc).

A.1 Código do problema de difusão de temperatura
//
// tempdi f f . cpp
//
//
// Created by rodr i go brogg i on 16/08/14.

2 APÊNDICE A. Códigos

//
//

// C++ inc lude f i l e s that we need
#inc lude <iostream>
#inc lude <algor ithm>
#inc lude <math . h>
#inc lude <set>

// Basic i n c lude f i l e needed f o r the mesh f u n c t i o n a l i t y .
#inc lude " l ibmesh / l ibmesh . h "
#inc lude " l ibmesh /mesh . h "
#inc lude " l ibmesh /mesh_generation . h "
#inc lude " l ibmesh / exodusII_io . h "
#inc lude " l ibmesh / gnuplot_io . h "
#inc lude " l ibmesh / l inear_impl i c i t_sys tem . h "
#inc lude " l ibmesh / equation_systems . h "

// Def ine the F in i t e Element object , quadrature r u l e and dof map
index ing handl ing .

#inc lude " l ibmesh / f e . h "
#inc lude " l ibmesh /quadrature_gauss . h "
#inc lude " l ibmesh /dof_map . h "

// Def ine u s e f u l datatypes f o r f i n i t e element
// matrix and vec to r components .
#inc lude " l ibmesh / sparse_matrix . h "
#inc lude " l ibmesh /numeric_vector . h "
#inc lude " l ibmesh /dense_matrix . h "
#inc lude " l ibmesh /dense_vector . h "

// Def ine the PerfLog , a performance l ogg ing u t i l i t y .
// I t i s u s e f u l f o r t iming events in a code and g iv ing
// you an idea where bo t t l en e ck s l i e .
#inc lude " l ibmesh / per f_log . h "

// The d e f i n i t i o n o f a geometr ic element
#inc lude " l ibmesh /elem . h "

A.1. Código do problema de difusão de temperatura 3

// To impose D i r i c h l e t boundary cond i t i on s
#inc lude " l ibmesh / d i r i ch l e t_bounda r i e s . h "
#inc lude " l ibmesh / ana ly t i c_ func t i on . h "
#inc lude " l ibmesh /string_to_enum . h "
#inc lude " l ibmesh / getpot . h "

// Bring in everyth ing from the libMesh namespace
us ing namespace l ibMesh ;
us ing namespace std ;

// e r r o r func t i on
void e r r o r (s t r i n g & s t r) {

cer r<<str<<endl ;
e x i t (1) ;

}

// Function prototype . This i s the func t i on that w i l l assemble
// the l i n e a r system f o r our problem . Note that the
// func t i on w i l l take the EquationSystems ob j e c t and the
// name o f the system we are assembl ing as input . From the
// EquationSystems ob j e c t we have ac e s s to the Mesh and
// other ob j e c t s we might need .
void assemble_tempdif f (EquationSystems & es , const s t r i n g &

system_name) ;

// Exact func t i on prototype f o r temperature .
Real T_di r i ch l e t (const Real x , const Real y) ;

// Exact va lue o f conduc t i v i ty constant (func t i on o f mate r i a l)
Real k_cond (const Real x) ;

// Def ine a wrapper f o r exact_so lut ion that w i l l be needed below
void exact_solution_wrapper (DenseVector<Number> & output , const

Point & p , const Real) ;

4 APÊNDICE A. Códigos

// Begin the main program .
i n t main (i n t argc , char ∗∗ argv)
{

// I n i t i a l i z e l ibMesh and any dependent l i b a r i e s , l i k e in
example 2 .

LibMeshInit i n i t (argc , argv) ;

// Dec lare a performance log f o r the main program
// PerfLog perf_main ("Main Program ") ;

// Create a GetPot ob j e c t to parse the command l i n e
GetPot command_line (argc , argv) ;

// Check f o r proper c a l l i n g arguments .
i f (argc < 3)
{

i f (i n i t . comm() . rank () == 0)
c e r r << "Usage : \ n "
<<" \ t ␣ " << argv [0] << " ␣−d␣ 1(2) " << " ␣−n␣15 "
<< endl ;

// This handy func t i on w i l l p r i n t the f i l e name , l i n e
number ,

// and then abort . Curr rent ly the l i b r a r y does not use
C++

// except ion handl ing .
l ibmesh_error () ;

}

// Br i e f message to the user r egard ing the program name
// and command l i n e arguments .
e l s e
{

cout << "Running␣ " << argv [0] ;

f o r (i n t i =1; i<argc ; i++)
cout << " ␣ " << argv [i] ;

cout << endl << endl ;

A.1. Código do problema de difusão de temperatura 5

}

// Read problem dimension from command l i n e . Use i n t
// in s t ead o f unsigned s i n c e the GetPot over load i s

ambiguous
// otherw i s e .
i n t dim = 2 ;
i f (command_line . s earch (1 , "−d "))

dim = command_line . next (dim) ;

// Skip higher−dimens iona l examples on a lower−dimens iona l
l ibMesh bu i ld

l ibmesh_example_assert (dim <= LIBMESH_DIM, " 2D/3D␣ support ") ;

// Create a mesh with user−de f ined dimension .
// Read number o f e lements from command l i n e
i n t ps = 15 ;
i f (command_line . s earch (1 , "−n "))

ps = command_line . next (ps) ;

// Read FE order from command l i n e
s t r i n g order = "SECOND" ;
i f (command_line . s earch (2 , "−Order " , "−o "))

order = command_line . next (order) ;

// Read FE Family from command l i n e
s t r i n g fami ly = "LAGRANGE" ;
i f (command_line . s earch (2 , "−FEFamily " , "−f "))

fami ly = command_line . next (fami ly) ;

// Cannot use d i s cont inuous ba s i s .
i f ((f ami ly == "MONOMIAL") | | (f ami ly == "XYZ"))
{

i f (i n i t . comm() . rank () == 0)
c e r r << " ex4␣ cu r r en t l y ␣ r e qu i r e s ␣a␣C^0␣ (or ␣ h igher) ␣FE

␣ ba s i s . " << endl ;
l ibmesh_error () ;

}

6 APÊNDICE A. Códigos

// Create a mesh , with dimension to be over r idden l a t e r ,
d i s t r i b u t e d

// ac r o s s the d e f au l t MPI communicator .
Mesh mesh (i n i t . comm()) ;

// Use the MeshTools : : Generat ion mesh genera to r to c r e a t e a
uniform

// gr id on the square [−1 ,1]^D. We i n s t r u c t the mesh
genera to r

// to bu i ld a mesh o f 8x8 \p Quad9 elements in 2D, or \p
Hex27

// elements in 3D.

//Problem domain
const Real R_i = 0 . 1 2 ;
const Real R_e = 0 . 3 0 ;
const Real t i = 0 . 0 2 0 ;
const Real te = 0 . 0 1 8 ;
const Real L = 10 ;

Real ha l fw idth = dim > 1 ? 1 . : 0 . ;
Real h a l f h e i g h t = dim > 2 ? 1 . : 0 . ;

i f ((f ami ly == "LAGRANGE") && (order == "FIRST"))
{

// No reason to use high−order geometr ic e lements i f we
are

// s o l v i n g with low−order f i n i t e e lements .
MeshTools : : Generation : : build_cube (mesh ,

ps ,
(dim>1) ? ps : 0 ,
(dim>2) ? ps : 0 ,
R_i , R_e,
0 , L ,
−ha l f h e i gh t ,

ha l f h e i gh t ,

A.1. Código do problema de difusão de temperatura 7

(dim==1) ? EDGE2 :
((dim == 2) ? QUAD4 :

HEX8)) ;
}

e l s e
{

MeshTools : : Generation : : build_cube (mesh ,
ps ,
(dim>1) ? ps : 0 ,
(dim>2) ? ps : 0 ,
R_i , R_e,
0 , L ,
−ha l f h e i gh t ,

ha l f h e i gh t ,
(dim==1) ? EDGE3 :
((dim == 2) ? QUAD9 :

HEX27)) ;
}

// Pr int in fo rmat ion about the mesh to the s c r e en .
mesh . p r in t_ in fo () ;

// Create an equat ion systems ob j e c t .
EquationSystems equation_systems (mesh) ;

// Dec lare the system and i t s v a r i a b l e s .
// Create a system named " D i f f u s i on "
L inear Impl i c i tSys tem& system =
equation_systems . add_system<Linear Impl i c i tSystem> ("

D i f f u s i o n ") ;

// Add the va r i a b l e "T" to " D i f f u s i on " . "T"
// w i l l be approximated us ing second−order approximation .
unsigned i n t T_var = system . add_variable ("T" ,

8 APÊNDICE A. Códigos

Ut i l i t y : :
string_to_enum<
Order> (order)
,

U t i l i t y : :
string_to_enum<
FEFamily>(fami ly
)) ;

// Give the system a po in t e r to the matrix assembly
// func t i on .
system . attach_assemble_funct ion (assemble_tempdif f) ;

// Construct a D i r i c h l e t boundary cond i t i on ob j e c t

// Ind i c a t e which boundary IDs we impose the BC on
// We e i t h e r bu i ld a l i n e , a square or a cube , and
// here we i nd i c a t e the boundar ies IDs in each case
set<boundary_id_type> boundary_ids ;

// the dim==1 mesh has two boundar ies with IDs 0 and 1

i f (dim==1){
boundary_ids . i n s e r t (0) ;
boundary_ids . i n s e r t (1) ;

}

// the dim==2 mesh has four boundar ies with IDs 0 , 1 , 2 and
3

i f (dim>=2)
{

boundary_ids . i n s e r t (1) ;
boundary_ids . i n s e r t (3) ;

}

// Program made f o r 1D or 2D dimensions
i f (dim>2)
{

s t r i n g s1 ("Code␣ supports ␣ j u s t ␣1D␣and␣2D␣problems ! ") ;

A.1. Código do problema de difusão de temperatura 9

e r r o r (s1) ;
}

// Create a vec to r s t o r i n g the va r i a b l e numbers which the BC
app l i e s to

vector<unsigned int> va r i a b l e s (1) ;
v a r i a b l e s [0] = T_var ;

// Create an Analyt icFunct ion ob j e c t that we use to p r o j e c t
the BC

// This func t i on j u s t c a l l s the func t i on exact_so lut ion v ia
exact_solution_wrapper

Analyt icFunct ion<> exact_so lut ion_object (
exact_solution_wrapper) ;

Dir ich letBoundary d i r i ch l e t_bc (boundary_ids ,
va r i ab l e s ,
&exact_so lut ion_object) ;

// We must add the D i r i c h l e t boundary cond i t i on _before_
// we c a l l equation_systems . i n i t ()
system . get_dof_map () . add_dirichlet_boundary (d i r i c h l e t_bc) ;

// I n i t i a l i z e the data s t r u c t u r e s f o r the equat ion system .
equation_systems . i n i t () ;

// Pr int in fo rmat ion about the system to the s c r e en .
equation_systems . p r in t_ in fo () ;
mesh . p r in t_ in fo () ;

// Solve the system " D i f f u s i on "
system . s o l v e () ;

// After s o l v i n g the system wr i t e the s o l u t i o n
// to a GMV−formatted p l o t f i l e .
i f (dim == 1)
{

10 APÊNDICE A. Códigos

GnuPlotIO p lo t (mesh , " D i s t r i buz i one ␣ d i ␣ temperatura ␣
rad i a l e , ␣1D" ,GnuPlotIO : :GRID_ON) ;

p l o t . write_equation_systems (" gnup lot_scr ipt " ,
equation_systems) ;

}
#i f d e f LIBMESH_HAVE_EXODUS_API

e l s e
{

ExodusII_IO (mesh) . write_equation_systems ((dim == 3) ?
" out_3 . e " : "

out_2 . e " ,
equation_systems
) ;

}
#end i f // #i f d e f LIBMESH_HAVE_EXODUS_API

// Al l done .
r e turn 0 ;

}

// We now de f i n e the matrix assembly func t i on f o r the
// D i f f u s i on system . We need to f i r s t compute element
// matr i ce s and r ight−hand s ide s , and then take in to
// account the boundary cond i t i on s .
void assemble_tempdif f (EquationSystems& es ,

const s t r i n g& system_name)
{

// I t i s a good idea to make sure we are assembl ing
// the proper system .
l ibmesh_assert_equal_to (system_name , " D i f f u s i on ") ;

// Dec lare a performance log . Give i t a d e s c r i p t i v e
// s t r i n g to i d e n t i f y what part o f the code we are
// logg ing , s i n c e the re may be many PerfLogs in an
// app l i c a t i o n .
PerfLog per f_log (" Matrix␣Assembly ") ;

A.1. Código do problema de difusão de temperatura 11

// Get a constant r e f e r e n c e to the mesh ob j e c t .
const MeshBase& mesh = es . get_mesh () ;

// The dimension that we are running
const unsigned i n t dim = mesh . mesh_dimension () ;

// Get a r e f e r e n c e to the L inear Impl i c i tSys tem we are
s o l v i n g

L inear Impl i c i tSys tem& system = es . get_system<
Linear Impl i c i tSystem >(" D i f f u s i o n ") ;

// A r e f e r e n c e to the \p DofMap ob j e c t f o r t h i s system . The
\p DofMap

// ob j e c t handles the index t r a n s l a t i o n from node and
element numbers

// to degree o f freedom numbers . We w i l l t a l k more about
the \p DofMap

// in fu tu r e examples .
const DofMap& dof_map = system . get_dof_map () ;

// Get a constant r e f e r e n c e to the F in i t e Element type
// f o r the f i r s t (and only) v a r i a b l e in the system .
FEType fe_type = dof_map . var iab le_type (0) ;

// Build a F in i t e Element ob j e c t o f the s p e c i f i e d type .
S ince the

// \p FEBase : : bu i ld () member dynamical ly c r e a t e s memory we
w i l l

// s t o r e the ob j e c t as an \p AutoPtr<FEBase>. This can be
thought

// o f as a po in t e r that w i l l c l ean up a f t e r i t s e l f .
AutoPtr<FEBase> f e (FEBase : : bu i ld (dim , fe_type)) ;

// A 5th order Gauss quadrature r u l e f o r numerica l
i n t e g r a t i o n .

QGauss q ru l e (dim , FIFTH) ;

12 APÊNDICE A. Códigos

// Te l l the f i n i t e element ob j e c t to use our quadrature r u l e
.

fe−>attach_quadrature_rule (&qru l e) ;

// Dec lare a s p e c i a l f i n i t e element ob j e c t f o r
// boundary i n t e g r a t i o n .
AutoPtr<FEBase> fe_face (FEBase : : bu i ld (dim , fe_type)) ;

// Boundary i n t e g r a t i o n r e qu i r e s one quadraure ru le ,
// with d imens i ona l i t y one l e s s than the d imens i ona l i t y
// o f the element .
QGauss q face (dim−1, FIFTH) ;

// Te l l the f i n t e element ob j e c t to use our
// quadrature r u l e .
fe_face−>attach_quadrature_rule (&qface) ;

// Here we de f i n e some r e f e r e n c e s to c e l l−s p e c i f i c data that
// w i l l be used to assemble the l i n e a r system .
// We begin with the element Jacobian ∗ quadrature weight at

each
// i n t e g r a t i o n po int .
const vector<Real>& JxW = fe−>get_JxW() ;

// The phy s i c a l XY l o c a t i o n s o f the quadrature po in t s on the
element .

// These might be u s e f u l f o r eva lua t ing s p a t i a l l y vary ing
mate r i a l

// p r op e r t i e s at the quadrature po in t s .
const vector<Point>& q_point = fe−>get_xyz () ;

// The element shape f unc t i on s eva luated at the quadrature
po in t s .

const vector<vector<Real> >& phi = fe−>get_phi () ;

// The element shape func t i on g rad i en t s eva luated at the
quadrature

// po in t s .
const vector<vector<RealGradient> >& dphi = fe−>get_dphi () ;

A.1. Código do problema de difusão de temperatura 13

// Def ine data s t r u c t u r e s to conta in the element matrix
// and r ight−hand−s i d e vec to r con t r i bu t i on . Fol lowing
// ba s i c f i n i t e element terminology we w i l l denote these
// "Ke" and "Fe " . More d e t a i l i s in example 3 .
DenseMatrix<Number> Ke ;
DenseVector<Number> Fe ;

// This vec to r w i l l hold the degree o f freedom i nd i c e s f o r
// the element . These d e f i n e where in the g l oba l system
// the element degree s o f freedom get mapped .
vector<dof_id_type> do f_ind i ce s ;

// Now we w i l l loop over a l l the e lements in the mesh .
// We w i l l compute the element matrix and r ight−hand−s i d e
// con t r i bu t i on .
MeshBase : : const_e lement_iterator e l = mesh .

act ive_loca l_elements_begin () ;
const MeshBase : : const_e lement_iterator end_el = mesh .

act ive_local_elements_end () ;

f o r (; e l != end_el ; ++e l)
{

// Star t l ogg ing the shape func t i on i n i t i a l i z a t i o n .
// This i s done through a s imple func t i on c a l l with
// the name o f the event to l og .
per f_log . push (" elem␣ i n i t ") ;

// Store a po in t e r to the element we are cu r r en t l y
// working on . This a l l ows f o r n i c e r syntax l a t e r .
const Elem∗ elem = ∗ e l ;

// Get the degree o f freedom i nd i c e s f o r the
// cur rent element . These d e f i n e where in the g l oba l
// matrix and r ight−hand−s i d e t h i s element w i l l
// con t r i bu t e to .
dof_map . do f_ ind i ce s (elem , do f_ ind i ce s) ;

// Compute the element−s p e c i f i c data f o r the cur rent

14 APÊNDICE A. Códigos

// element . This i nvo l v e s computing the l o c a t i o n o f the
// quadrature po in t s (q_point) and the shape f unc t i on s
// (phi , dphi) f o r the cur rent element .
fe−>r e i n i t (elem) ;

// Zero the element matrix and r ight−hand s i d e be f o r e
// summing them . We use the r e s i z e member here because
// the number o f degree s o f freedom might have changed

from
// the l a s t element . Note that t h i s w i l l be the case i f

the
// element type i s d i f f e r e n t (i . e . the l a s t element was

a
// t r i a ng l e , now we are on a qu ad r i l a t e r a l) .
Ke . r e s i z e (do f_ ind i ce s . s i z e () ,

do f_ ind i ce s . s i z e ()) ;

Fe . r e s i z e (do f_ind i ce s . s i z e ()) ;

// Stop l ogg ing the shape func t i on i n i t i a l i z a t i o n .
// I f you f o r g e t to stop l ogg ing an event the PerfLog
// ob j e c t w i l l probably catch the e r r o r and abort .
per f_log . pop (" elem␣ i n i t ") ;

// Now we w i l l bu i ld the element matrix . This i nvo l v e s
// a double loop to i n t e g r a t e the t e s t func i on s (i)

aga in s t
// the t r i a l f un c t i on s (j) .
//
// We have s p l i t the numeric i n t e g r a t i o n in to two loops
// so that we can log the matrix and r ight−hand−s i d e
// computation s ep e r a t e l y .
//
// Now s t a r t l ogg ing the element matrix computation
per f_log . push ("Ke") ;

f o r (unsigned i n t qp=0; qp<qru l e . n_points () ; qp++){

const Real x = q_point [qp] (0) ;

A.1. Código do problema de difusão de temperatura 15

f o r (unsigned i n t i =0; i<phi . s i z e () ; i++)
f o r (unsigned i n t j =0; j<phi . s i z e () ; j++)

Ke(i , j) += JxW[qp] ∗ (x∗k_cond (x)∗dphi [i] [qp]∗
dphi [j] [qp]) ;

}

// Stop l ogg ing the matrix computation
per f_log . pop ("Ke") ;

// Now we bu i ld the element r ight−hand−s i d e con t r i bu t i on
.

// This i nvo l v e s a s i n g l e loop in which we i n t e g r a t e the
// " f o r c i n g func t i on " in the PDE aga in s t the t e s t

f unc t i on s .
//
// Star t l ogg ing the r ight−hand−s i d e computation
per f_log . push ("Fe ") ;

// Nul l r i g h t hand s i d e
f o r (unsigned i n t i =0; i<phi . s i z e () ; i++)

Fe (i) += 0 ;

// Stop l ogg ing the r ight−hand−s i d e computation
per f_log . pop ("Fe ") ;

// I f t h i s assembly program were to be used on an
adapt ive mesh ,

// we would have to apply any hanging node c on s t r a i n t
equat ions

// Also , note that here we c a l l
heterogenously_constrain_element_matrix_and_vector

// to impose a inhomogeneous D i r i c h l e t boundary
cond i t i on s .

dof_map .
heterogenously_constrain_element_matrix_and_vector (

16 APÊNDICE A. Códigos

Ke , Fe , do f_ ind i ce s) ;

// The element matrix and r ight−hand−s i d e are now bu i l t
// f o r t h i s element . Add them to the g l oba l matrix and
// r ight−hand−s i d e vec to r . The \p SparseMatrix : :

add_matrix ()
// and \p NumericVector : : add_vector () members do t h i s

f o r us .
// Sta r t l ogg ing the i n s e r t i o n o f the l o c a l (element)
// matrix and vec to r in to the g l oba l matrix and vec to r
per f_log . push (" matrix ␣ i n s e r t i o n ") ;

system . matrix−>add_matrix (Ke , do f_ ind i ce s) ;
system . rhs−>add_vector (Fe , do f_ ind i ce s) ;

// Sta r t l ogg ing the i n s e r t i o n o f the l o c a l (element)
// matrix and vec to r in to the g l oba l matrix and vec to r
per f_log . pop (" matrix ␣ i n s e r t i o n ") ;

}

// That ’ s i t . We don ’ t need to do anything e l s e to the
// PerfLog . When i t goes out o f scope (at t h i s func t i on

return)
// i t w i l l p r i n t i t s l og to the s c r e en .

}

// Exact func t i on prototype f o r temperature in the boundary .
Real T_di r i ch l e t (const Real x , const Real y = 0 .) {

const Real R_i = 0 . 1 2 ;
const Real R_e = 0 . 3 0 ;
const Real L = 10 ;

// l i n e a r change on ex t e rna l temperature with grad i en t equal
to the max

// v e r i f i e d in ocean cond i t i on s
i f (x == R_i)

re turn 95 ;

A.1. Código do problema de difusão de temperatura 17

e l s e i f (x == R_e)
re turn 10 + 0.1∗ y ;

e l s e {
s t r i n g s1 (" Function␣T_di r i ch l e t ␣ c a l l e d ␣ f o r ␣x␣out␣ o f ␣

domain␣bonds ! ") ;
e r r o r (s1) ;

}

}

// func t i on that d e f i n e mate r i a l c onduc t i v i ty
Real k_cond (const Real x) {

// s t e e l inne r and outer conduc t i v i t y constant
const Real k_inner_stee l = 50 ;
const Real k_outer_stee l = 50 ;

// i n s u l a t i o n conduc t i v i ty constant
const Real k_insu la t ion = 0 . 1 6 ;

// o v e r a l l i n t e r n a l and ex t e rna l rad iu s
const Real R_i = 0 . 1 2 ;
const Real R_e = 0 . 3 0 ;

// i n t e r n a l and ex t e rna l s t e e l p ipe th i ckne s s
const Real t i = 0 . 0 2 0 ;
const Real te = 0 . 0 1 8 ;

// i n s u l a t i o n th i ckne s s
const Real t_ins = R_e − R_i − t i − te ;

i f (x >= R_i && x <= R_i+t i)
r e turn k_inner_stee l ;

e l s e i f (x > R_i + t i && x < R_e−te)
re turn k_insu la t ion ;

18 APÊNDICE A. Códigos

e l s e i f (x >= R_e − te && x <= R_e)
return k_outer_stee l ;

e l s e {
s t r i n g s1 (" Function␣k_cond␣ c a l l e d ␣ f o r ␣x␣out␣ o f ␣domain␣

bonds ! ") ;
e r r o r (s1) ;

}

}

//wrapper o f exact s o l u t i o n used to impose D i r i c h l e t c ond i t i on s
void exact_solution_wrapper (DenseVector<Number> & output , const

Point & p , const Real) {

const Real R_i = 0 . 1 2 ;
const Real R_e = 0 . 3 0 ;

output (0) = T_di r i ch l e t (p (0) , (LIBMESH_DIM>1)?p (1) : 0) ;

}

A.2 Código do problema estrutural sem efeitos térmicos

// C++ inc lude f i l e s that we need
#inc lude <iostream>
#inc lude <algor ithm>
#inc lude <math . h>
#inc lude <fstream>
#inc lude <iomanip>

A.2. Código do problema estrutural sem efeitos térmicos 19

// libMesh i n c l ud e s
#inc lude " l ibmesh / l ibmesh . h "
#inc lude " l ibmesh /mesh . h "
#inc lude " l ibmesh /mesh_generation . h "
#inc lude " l ibmesh / exodusII_io . h "
#inc lude " l ibmesh / gnuplot_io . h "
#inc lude " l ibmesh / l inear_impl i c i t_sys tem . h "
#inc lude " l ibmesh / equation_systems . h "
#inc lude " l ibmesh / f e . h "
#inc lude " l ibmesh /quadrature_gauss . h "
#inc lude " l ibmesh /dof_map . h "
#inc lude " l ibmesh / sparse_matrix . h "
#inc lude " l ibmesh /numeric_vector . h "
#inc lude " l ibmesh /dense_matrix . h "
#inc lude " l ibmesh /dense_submatrix . h "
#inc lude " l ibmesh /dense_vector . h "
#inc lude " l ibmesh /dense_subvector . h "
#inc lude " l ibmesh / per f_log . h "
#inc lude " l ibmesh /elem . h "
#inc lude " l ibmesh /boundary_info . h "
#inc lude " l ibmesh / zero_funct ion . h "
#inc lude " l ibmesh / d i r i ch l e t_bounda r i e s . h "
#inc lude " l ibmesh /string_to_enum . h "
#inc lude " l ibmesh / getpot . h "

//Handling e r r o r s
void e r r o r (std : : s t r i n g & s t r) {

std : : ce r r<<str<<std : : endl ;
e x i t (1) ;

}

// Bring in everyth ing from the libMesh namespace
us ing namespace l ibMesh ;

//Problem geometr ic parameters :
i n l i n e Real R_i () { re turn 0 . 1 2 ; }
i n l i n e Real R_e() { re turn 0 . 3 0 ; }

20 APÊNDICE A. Códigos

i n l i n e Real t_i () { re turn 0 . 0 2 ; }
i n l i n e Real t_e () { re turn 0 . 0 1 8 ; }
i n l i n e Real Length () { re turn 1 0 . 0 ; }

//Problem mate r i a l s parameters :
Real mu (const Real x) ;

Real lambda (const Real x) ;

Real rho (const Real x) ;

//Problem Newmann b . c :
Real N_section (const Real x) ;

Real PressurexR (const Real x , const Real y) ;

//Golbal problem input
Real N_global (const Real x) ;

// Matrix and r ight−hand s i d e assemble
void a s s emb l e_e l a s t i c i t y (EquationSystems& es ,

const std : : s t r i n g& system_name) ;

void compute_stresses (EquationSystems& es) ;

// Begin the main program .
i n t main (i n t argc , char ∗∗ argv)
{

// I n i t i a l i z e l ibMesh and any dependent l i b a r i e s
LibMeshInit i n i t (argc , argv) ;

GetPot command_line (argc , argv) ;

// I n i t i a l i z e the c a n t i l e v e r mesh
const unsigned i n t dim = 2 ;

// Skip t h i s 2D example i f l ibMesh was compiled as 1D−only .

A.2. Código do problema estrutural sem efeitos térmicos 21

// libmesh_example_assert (dim <= LIBMESH_DIM, "2D support ") ;

i n t psr = 50 ;
i f (command_line . s earch (1 , "−nx "))

psr = command_line . next (psr) ;

i n t p s l = 50 ;
i f (command_line . s earch (1 , "−ny "))

p s l = command_line . next (p s l) ;

// Read FE order from command l i n e
std : : s t r i n g order = "SECOND" ;
i f (command_line . s earch (2 , "−Order " , "−o "))
order = command_line . next (order) ;
s td : : cout<<" order : ␣ "<<order<<std : : endl ;

// Create a 2D mesh d i s t r i b u t e d ac ro s s the d e f au l t MPI
communicator .

Mesh mesh (i n i t . comm() , dim) ;

i f ((order == "FIRST")) {
MeshTools : : Generation : : bui ld_square (mesh ,

psr , ps l ,
R_i () , R_e() ,
0 . , Length () ,
QUAD4) ;

}
e l s e {
MeshTools : : Generation : : bui ld_square (mesh ,

psr , ps l ,
R_i () , R_e() ,
0 . , Length () ,
QUAD9) ;

}

// Pr int in fo rmat ion about the mesh to the s c r e en .
mesh . p r in t_ in fo () ;

22 APÊNDICE A. Códigos

// Create an equat ion systems ob j e c t .
EquationSystems equation_systems (mesh) ;

// Dec lare the system and i t s v a r i a b l e s .
// Create a system named " E l a s t i c i t y "
L inear Impl i c i tSys tem& system =

equation_systems . add_system<Linear Impl i c i tSystem> ("
E l a s t i c i t y ") ;

// Add two disp lacement va r i ab l e s , u and v , to the system
unsigned i n t u_var = system . add_variable ("u " , U t i l i t y : :

string_to_enum<Order> (order) , LAGRANGE) ;
unsigned i n t v_var = system . add_variable (" v " , U t i l i t y : :

string_to_enum<Order> (order) , LAGRANGE) ;

system . attach_assemble_function (a s s emb l e_e l a s t i c i t y) ;

// Construct a D i r i c h l e t boundary cond i t i on ob j e c t
// We impose a " clamped " boundary cond i t i on on the
// " lowear " and " upper " boundaries , i . e . bc_id = 0 ,2
std : : set<boundary_id_type> boundary_ids ;
boundary_ids . i n s e r t (0) ;
//boundary_ids . i n s e r t (2) ;

// Create a vec to r s t o r i n g the va r i a b l e numbers which the BC
app l i e s to

std : : vector<unsigned int> va r i a b l e s (2) ;
v a r i a b l e s [0] = u_var ; v a r i a b l e s [1] = v_var ;

// Create a ZeroFunction to i n i t i a l i z e d i r i c h l e t_bc
ZeroFunction<> z f ;

Dir ich letBoundary d i r i ch l e t_bc (boundary_ids ,
va r i ab l e s ,
&z f) ;

A.2. Código do problema estrutural sem efeitos térmicos 23

// We must add the D i r i c h l e t boundary cond i t i on _before_
// we c a l l equation_systems . i n i t ()
system . get_dof_map () . add_dirichlet_boundary (d i r i c h l e t_bc) ;

// Also , i n i t i a l i z e an Expl i c i tSystem to s t o r e s t r e s s e s
Expl i c i tSystem& stress_system =

equation_systems . add_system<Expl ic i tSystem> (" StressSystem ")
;

s t ress_system . add_variable (" sigma_rr " , CONSTANT, MONOMIAL) ;
s t ress_system . add_variable (" sigma_zz " , CONSTANT, MONOMIAL) ;
s t ress_system . add_variable (" sigma_rz " , CONSTANT, MONOMIAL) ;
s t ress_system . add_variable (" sigma_theta " , CONSTANT, MONOMIAL) ;
s t ress_system . add_variable (" vonMises " , CONSTANT, MONOMIAL) ;

// I n i t i a l i z e the data s t r u c t u r e s f o r the equat ion system .
equation_systems . i n i t () ;

// Pr int in fo rmat ion about the system to the s c r e en .
equation_systems . p r in t_ in fo () ;

// Solve the system
system . s o l v e () ;

// Post−proce s s the s o l u t i o n to compute the s t r e s s e s
compute_stresses (equation_systems) ;

// Plot the s o l u t i o n
#i f d e f LIBMESH_HAVE_EXODUS_API

// Use s i n g l e p r e c i s i o n in t h i s case (reduces the s i z e o f the
exodus f i l e)

ExodusII_IO exo_io (mesh , /∗ s i n g l e_p r e c i s i o n=∗/ true) ;

// F i r s t p l o t the disp lacement f i e l d us ing a nodal p l o t
std : : set<std : : s t r i ng> system_names ;
system_names . i n s e r t (" E l a s t i c i t y ") ;

24 APÊNDICE A. Códigos

exo_io . write_equation_systems (" displacement_and_stress . exo " ,
equation_systems ,&system_names) ;

// then append element−based d i s cont inuous p l o t s o f the
s t r e s s e s

exo_io . write_element_data (equation_systems) ;
#end i f // #i f d e f LIBMESH_HAVE_EXODUS_API

// Al l done .
r e turn 0 ;

}

Real mu (const Real x) {
// s t e e l inne r and outer cons tant s
const Real E_pipe_mod = 2e11 ;
const Real poisson_pipe_mod = 0 . 3 ;

//mu pipe
const Real mu_p = E_pipe_mod/(2∗(1+poisson_pipe_mod)) ;

// i n s u l a t i o n cons tant s
const Real E_ins_mod = 5e9 ;
const Real poisson_ins_mod = 0 . 4 ;

const Real mu_i = E_ins_mod/(2∗(1+poisson_ins_mod)) ;

i f (x >= R_i () && x <= R_i ()+t_i ())
r e turn mu_p;

e l s e i f (x > R_i () + t_i () && x < R_e()−t_e ())
re turn mu_i ;

e l s e i f (x >= R_e() − t_e () && x <= R_e())
re turn mu_p;

A.2. Código do problema estrutural sem efeitos térmicos 25

e l s e {
std : : s t r i n g s1 (" Function␣mu␣ c a l l e d ␣ f o r ␣x␣out␣ o f ␣domain␣

bonds ! ") ;
e r r o r (s1) ;

}

}

Real lambda (const Real x) {
// s t e e l inne r and outer cons tant s
const Real E_pipe_mod = 2e11 ;
const Real poisson_pipe_mod = 0 . 3 ;

//mu pipe
const Real lambda_p = (E_pipe_mod∗poisson_pipe_mod) /((1+

poisson_pipe_mod) ∗(1−2∗poisson_pipe_mod)) ;

// i n s u l a t i o n cons tant s
const Real E_ins_mod = 5e9 ;
const Real poisson_ins_mod = 0 . 4 ;

const Real lambda_i = (E_ins_mod∗poisson_ins_mod) /((1+
poisson_ins_mod) ∗(1−2∗poisson_ins_mod)) ;

i f (x >= R_i () && x <= R_i ()+t_i ())
r e turn lambda_p ;

e l s e i f (x > R_i () + t_i () && x < R_e()−t_e ())
re turn lambda_i ;

e l s e i f (x >= R_e() − t_e () && x <= R_e())
re turn lambda_p ;

26 APÊNDICE A. Códigos

e l s e {
std : : s t r i n g s1 (" Function␣lambda␣ c a l l e d ␣ f o r ␣x␣out␣ o f ␣

domain␣bonds ! ") ;
e r r o r (s1) ;

}

}

Real rho (const Real x) {
// s t e e l inne r and outer cons tant s
const Real rho_pipe = 8000 ;

const Real rho_ins = 1300 ;

i f (x >= R_i () && x <= R_i ()+t_i ())
r e turn rho_pipe ;

e l s e i f (x > R_i () + t_i () && x < R_e()−t_e ())
re turn rho_ins ;

e l s e i f (x >= R_e() − t_e () && x <= R_e())
re turn rho_pipe ;

e l s e {
std : : s t r i n g s1 (" Function␣ rho␣ c a l l e d ␣ f o r ␣x␣out␣ o f ␣domain␣

bonds ! ") ;
e r r o r (s1) ;

}

A.2. Código do problema estrutural sem efeitos térmicos 27

}

Real PressurexR (const Real x , const Real y = 0 .) {

// l i n e a r change on ex t e rna l temperature with grad i en t equal
to the max

// v e r i f i e d in ocean cond i t i on s
i f (x == R_i ())

re turn −R_i () ∗(104 e6 − 10500∗y) ; //104 e6 −

e l s e i f (x == R_e())
re turn R_e() ∗ (1 . 5 e7 − 10000∗y) ;

e l s e {
std : : ce r r<<"x␣=␣ "<<x<<"y␣=␣ "<<y<<std : : endl ;
s td : : s t r i n g s1 (" Function␣PressurexR␣ c a l l e d ␣ f o r ␣x␣out␣ o f ␣

domain␣bonds ! ") ;
e r r o r (s1) ;

}

}
void a s s emb l e_e l a s t i c i t y (EquationSystems& es ,

const std : : s t r i n g& system_name)
{

//making sure we w i l l assemble the r i g h t system
libmesh_assert_equal_to (system_name , " E l a s t i c i t y ") ;

// g e t t i n g the mesh r e f e r e n c e
const MeshBase& mesh = es . get_mesh () ;

// g e t t i n g dimension o f the system
const unsigned i n t dim = mesh . mesh_dimension () ;

28 APÊNDICE A. Códigos

Linear Impl i c i tSys tem& system = es . get_system<
Linear Impl i c i tSystem >(" E l a s t i c i t y ") ;

// g e t t i n g the va r i ab l e numbers
const unsigned i n t u_var = system . variable_number ("u ") ;
const unsigned i n t v_var = system . variable_number (" v ") ;

// g e t t i n g dof map and the f e type (both v a r i a b l e s have the
same type otherw i se need to be changed)

const DofMap& dof_map = system . get_dof_map () ;
FEType fe_type = dof_map . var iab le_type (0) ;

// having a " dynamic " po in t e r o f the p r e s c r i b ed type , g e t t i n g
d e f au l t quadrature order

AutoPtr<FEBase> f e (FEBase : : bu i ld (dim , fe_type)) ;
QGauss q ru l e (dim , fe_type . default_quadrature_order ()) ;
fe−>attach_quadrature_rule (&qru l e) ;

//same f o r boundary e lements
AutoPtr<FEBase> fe_face (FEBase : : bu i ld (dim , fe_type)) ;
QGauss q face (dim−1, fe_type . default_quadrature_order ()) ;
fe_face−>attach_quadrature_rule (&qface) ;

// jacob ian and quadrature weights f o r numeric i n t e g r a t i o n (
taken in the quadrature po in t s)

const std : : vector<Real>& JxW = fe−>get_JxW() ;
const std : : vector<std : : vector<Real> >& phi = fe−>get_phi () ;
const std : : vector<std : : vector<RealGradient> >& dphi = fe−>

get_dphi () ;

const std : : vector<Point>& q_point = fe−>get_xyz () ;

DenseMatrix<Number> Ke ;
DenseVector<Number> Fe ;

//Submatrix f o r handl ing

A.2. Código do problema estrutural sem efeitos térmicos 29

DenseSubMatrix<Number>
Kuu(Ke) , Kuv(Ke) ,
Kvu(Ke) , Kvv(Ke) ;

DenseSubVector<Number>
Fu(Fe) ,
Fv(Fe) ;

s td : : vector<dof_id_type> dof_ind i ce s ;
s td : : vector<dof_id_type> dof_indices_u ;
std : : vector<dof_id_type> dof_indices_v ;

MeshBase : : const_e lement_iterator e l = mesh .
act ive_loca l_elements_begin () ;

const MeshBase : : const_e lement_iterator end_el = mesh .
act ive_local_elements_end () ;

f o r (; e l != end_el ; ++e l)
{

const Elem∗ elem = ∗ e l ;

dof_map . do f_ ind i ce s (elem , do f_ ind i ce s) ;
dof_map . do f_ ind i ce s (elem , dof_indices_u , u_var) ;
dof_map . do f_ ind i ce s (elem , dof_indices_v , v_var) ;

const unsigned i n t n_dofs = do f_ind i ce s . s i z e () ;
const unsigned i n t n_u_dofs = dof_indices_u . s i z e () ;
const unsigned i n t n_v_dofs = dof_indices_v . s i z e () ;

fe−>r e i n i t (elem) ;

Ke . r e s i z e (n_dofs , n_dofs) ;
Fe . r e s i z e (n_dofs) ;

Kuu . r e p o s i t i o n (u_var∗n_u_dofs , u_var∗n_u_dofs , n_u_dofs ,
n_u_dofs) ;

30 APÊNDICE A. Códigos

Kuv . r e p o s i t i o n (u_var∗n_u_dofs , v_var∗n_u_dofs , n_u_dofs ,
n_v_dofs) ;

Kvu . r e p o s i t i o n (v_var∗n_u_dofs , u_var∗n_v_dofs , n_v_dofs ,
n_u_dofs) ;

Kvv . r e p o s i t i o n (v_var∗n_u_dofs , v_var∗n_u_dofs , n_v_dofs ,
n_v_dofs) ;

Fu . r e p o s i t i o n (u_var∗n_u_dofs , n_u_dofs) ;
Fv . r e p o s i t i o n (v_var∗n_u_dofs , n_v_dofs) ;

f o r (unsigned i n t qp=0; qp<qru l e . n_points () ; qp++)
{

const Real x = q_point [qp] (0) ;
const Real y = q_point [qp] (1) ;

f o r (unsigned i n t i =0; i<n_u_dofs ; i++){
f o r (unsigned i n t j =0; j<n_u_dofs ; j++)
{

//See the weak formulat ion

Kuu(i , j) += JxW[qp]∗2∗mu(x)∗x∗dphi [j] [qp] (0) ∗dphi [
i] [qp] (0) ;

Kuu(i , j) += (JxW[qp]∗2∗mu(x)∗phi [j] [qp]∗ phi [i] [qp
]) /x ;

Kuu(i , j) += JxW[qp]∗2∗mu(x)∗x∗dphi [j] [qp] (1) ∗dphi [
i] [qp] (1) ;

Kuu(i , j) += JxW[qp]∗ lambda (x)∗x∗dphi [j] [qp] (0) ∗
dphi [i] [qp] (0) ;

Kuu(i , j) += JxW[qp]∗ lambda (x)∗dphi [j] [qp] (0) ∗phi [i
] [qp] ;

A.2. Código do problema estrutural sem efeitos térmicos 31

Kuu(i , j) += JxW[qp]∗ lambda (x)∗phi [j] [qp]∗ dphi [i] [
qp] (0) ;

Kuu(i , j) += (JxW[qp]∗ lambda (x)∗phi [j] [qp]∗ phi [i] [
qp]) /x ;

}
}
f o r (unsigned i n t i =0; i<n_u_dofs ; i++)

f o r (unsigned i n t j =0; j<n_v_dofs ; j++)
{

Kuv(i , j) += JxW[qp]∗2∗mu(x)∗x∗dphi [j] [qp] (0) ∗dphi [
i] [qp] (1) ;

Kuv(i , j) += JxW[qp]∗ lambda (x)∗x∗dphi [j] [qp] (1) ∗
dphi [i] [qp] (0) ;

Kuv(i , j) += JxW[qp]∗ lambda (x)∗dphi [j] [qp] (1) ∗phi [
i] [qp] ;

}

f o r (unsigned i n t i =0; i<n_v_dofs ; i++)
f o r (unsigned i n t j =0; j<n_u_dofs ; j++)
{

Kvu(i , j) += JxW[qp]∗2∗mu(x)∗x∗dphi [j] [qp] (1) ∗
dphi [i] [qp] (0) ;

Kvu(i , j) += JxW[qp]∗ lambda (x)∗x∗dphi [j] [qp] (0) ∗
dphi [i] [qp] (1) ;

Kvu(i , j) += JxW[qp]∗ lambda (x)∗phi [j] [qp]∗ dphi [i
] [qp] (1) ;

}

f o r (unsigned i n t i =0; i<n_v_dofs ; i++)

32 APÊNDICE A. Códigos

f o r (unsigned i n t j =0; j<n_v_dofs ; j++)
{

Kvv(i , j) += JxW[qp]∗ (2∗mu(x)+lambda (x))∗x∗dphi [j] [
qp] (1) ∗dphi [i] [qp] (1) ;

Kvv(i , j) += JxW[qp]∗2∗mu(x)∗x∗dphi [j] [qp] (0) ∗dphi [
i] [qp] (0) ;

}

//body load − uncomment in case with body load
// f o r (unsigned i n t i =0; i<n_v_dofs ; i++)

//Fv(i) += JxW[qp]∗10∗x∗(1000− rho (x))∗phi [i] [qp] ;

}

f o r (unsigned i n t s i d e =0; s ide<elem−>n_sides () ; s i d e++)
i f (elem−>neighbor (s i d e) == NULL)

{
const std : : vector<std : : vector<Real> >& phi_face =

fe_face−>get_phi () ;
const std : : vector<Real>& JxW_face = fe_face−>

get_JxW() ;
const std : : vector<Point>& q_point_face = fe_face−>

get_xyz () ;

fe_face−>r e i n i t (elem , s i d e) ;

// Apply p r e s su r e on l a t e r a l s i d e s (Newmann)
i f (! mesh . boundary_info−>has_boundary_id (elem ,

s ide , 0) && !mesh . boundary_info−>
has_boundary_id (elem , s ide , 2))

{
f o r (unsigned i n t qp=0; qp<qface . n_points () ; qp

++)
{

const Real x = q_point_face [qp] (0) ;
const Real y = q_point_face [qp] (1) ;

A.2. Código do problema estrutural sem efeitos térmicos 33

f o r (unsigned i n t i =0; i<n_u_dofs ; i++)
{

const Real R_i = 0 . 1 2 ;
const Real R_e = 0 . 3 0 ;

i f (mesh . boundary_info−>has_boundary_id (
elem , s ide , 1) | | mesh . boundary_info−>
has_boundary_id (elem , s ide , 3)) {
Fu(i) += −JxW_face [qp]∗ PressurexR (x , y)
∗phi_face [i] [qp] ;

}

}
}

}

// Apply p r e s su r e on upper s i d e (Newmann)
i f (mesh . boundary_info−>has_boundary_id (elem ,

s ide , 2))
{

// loop over quadrature f a c e ponts
f o r (unsigned i n t qp=0; qp<qface . n_points () ;

qp++)
{

//Gett ing cur rent quadrature po int
coo rd ina t e s :

const Real x = q_point_face [qp] (0) ;
const Real y = q_point_face [qp] (1) ;

// loop over the r a d i a l do f s s i n c e the
p r e s su r e ac t s j u s t upon t h i s
d i r e c t i o n

f o r (unsigned i n t i =0; i<n_u_dofs ; i++)
{

34 APÊNDICE A. Códigos

//See the weak formulat ion to
understand the term

Fv(i) += JxW_face [qp]∗ N_section (x)∗
phi_face [i] [qp] ;

}
}

}

}

dof_map . constrain_element_matrix_and_vector (Ke , Fe ,
do f_ ind i ce s) ;

system . matrix−>add_matrix (Ke , do f_ ind i ce s) ;
system . rhs−>add_vector (Fe , do f_ ind i ce s) ;

}

}

void compute_stresses (EquationSystems& es)
{

const MeshBase& mesh = es . get_mesh () ;

const unsigned i n t dim = mesh . mesh_dimension () ;

L inear Impl i c i tSys tem& system = es . get_system<
Linear Impl i c i tSystem >(" E l a s t i c i t y ") ;

unsigned i n t displacement_vars [2] ;
d isplacement_vars [0] = system . variable_number ("u ") ;
d isplacement_vars [1] = system . variable_number (" v ") ;
const unsigned i n t u_var = system . variable_number ("u ") ;

A.2. Código do problema estrutural sem efeitos térmicos 35

const DofMap& dof_map = system . get_dof_map () ;
FEType fe_type = dof_map . var iab le_type (u_var) ;
AutoPtr<FEBase> f e (FEBase : : bu i ld (dim , fe_type)) ;
QGauss q ru l e (dim , fe_type . default_quadrature_order ()) ;
fe−>attach_quadrature_rule (&qru l e) ;

const std : : vector<Real>& JxW = fe−>get_JxW() ;
const std : : vector<std : : vector<Real> >& phi = fe−>get_phi () ;
const std : : vector<std : : vector<RealGradient> >& dphi = fe−>

get_dphi () ;
const std : : vector<Point>& q_point = fe−>get_xyz () ;

// Also , get a r e f e r e n c e to the Expl i c i tSystem
Expl i c i tSystem& stress_system = es . get_system<Expl ic i tSystem >(

" StressSystem ") ;
const DofMap& stress_dof_map = stress_system . get_dof_map () ;
unsigned i n t sigma_vars [4] ;
sigma_vars [0] = stress_system . variable_number (" sigma_rr ") ;
sigma_vars [1] = stress_system . variable_number (" sigma_zz ") ;
sigma_vars [2] = stress_system . variable_number (" sigma_rz ") ;
sigma_vars [3] = stress_system . variable_number (" sigma_theta ") ;
unsigned i n t vonMises_var = stress_system . variable_number ("

vonMises ") ;

// Storage f o r the s t r e s s dof i n d i c e s on each element
std : : vector< std : : vector<dof_id_type> > dof_indices_var (system

. n_vars ()) ;
s td : : vector<dof_id_type> stres s_dof_ind ices_var ;

// To s t o r e the s t r e s s t en so r on each element
DenseVector<Number> elem_sigma ;

MeshBase : : const_e lement_iterator e l = mesh .
act ive_loca l_elements_begin () ;

const MeshBase : : const_e lement_iterator end_el = mesh .
act ive_local_elements_end () ;

s td : : f s t ream f s ;

36 APÊNDICE A. Códigos

f s . open (" s t r a i n s . txt " , s td : : f s t ream : : in | s td : : f s t ream : : out |
s td : : f s t ream : : app) ;

f o r (; e l != end_el ; ++e l)
{

const Elem∗ elem = ∗ e l ;

f o r (unsigned i n t var=0; var <2; var++)
{

dof_map . do f_ ind i ce s (elem , dof_indices_var [var] ,
d isplacement_vars [var]) ;

}

fe−>r e i n i t (elem) ;

elem_sigma . r e s i z e (4) ;

f o r (unsigned i n t qp=0; qp<qru l e . n_points () ; qp++)
{

const Real x = q_point [qp] (0) ;
const Real y = q_point [qp] (1) ;
const unsigned i n t n_x_dofs = dof_indices_var [0] .

s i z e () ;
const unsigned i n t n_y_dofs = dof_indices_var [1] .

s i z e () ;

// Get the g rad i en t at t h i s quadrature po int
Gradient displacement_gradient_x ;
Gradient displacement_gradient_y ;
f o r (unsigned i n t l =0; l<n_x_dofs ; l++)
{

displacement_gradient_x . add_scaled (dphi [l] [qp
] , system . cur r ent_so lu t i on (dof_indices_var
[0] [l])) ;

}

f o r (unsigned i n t l =0; l<n_y_dofs ; l++)

A.2. Código do problema estrutural sem efeitos térmicos 37

{
displacement_gradient_y . add_scaled (dphi [l] [qp

] , system . cur r ent_so lu t i on (dof_indices_var
[1] [l])) ;

}

Real eps i l on_theta = 0 ;

// std : : cout<<std : : endl ;
// std : : cout<<"node va lue s and phi va lue s on

quadrature : "<<std : : endl ;

f o r (unsigned i n t l =0; l<n_x_dofs ; l++)
{

// std : : cout<<"("<<system . cur r ent_so lu t i on (
dof_indices_var [0] [l]) <<","<<phi [l] [qp]<<")
"<<"\t " ;

eps i l on_theta += phi [l] [qp]∗ system .
cur r ent_so lu t i on (dof_indices_var [0] [l]) /x ;

}

//Uncomment in case you want s t r a i n in fo rmat ion
// f s <<"o = ("<<x<<","<<y<<")"<<std : : endl ;
// f s <<"d(ur) /dr = "<<displacement_gradient_x (0)

<<"\t"<<"d(ur) /dz = "<<displacement_gradient_x
(1)<<std : : endl ;

// f s <<"d(uz) /dr = "<<displacement_gradient_y (0)
<<"\t"<<"d(uz) /dz = "<<displacement_gradient_y
(1)<<std : : endl ;

// f s <<"eps i l on_theta = "<<eps i lon_theta<<std : :
endl<<std : : endl ;

Real g l oba l_t ra c t i on = 0 . 0 ;

//Comment or not i f you want to account f o r the
g l oba l e f f e c t

g l oba l_t ra c t i on = N_global (x) ;

38 APÊNDICE A. Códigos

//The i n t e g r a t i o n i s done to have more p r e c i s e
cons tant s

elem_sigma (0) += JxW[qp] ∗ ((lambda (x)+ 2∗mu(x)) ∗(
displacement_gradient_x (0)) + lambda (x) ∗(
displacement_gradient_y (1)+eps i l on_theta)) ;

elem_sigma (1) += JxW[qp] ∗ ((lambda (x)+ 2∗mu(x)) ∗(
displacement_gradient_y (1)) + lambda (x) ∗(
displacement_gradient_x (0)+eps i l on_theta) +
g l oba l_t ra c t i on) ;

elem_sigma (2) += JxW[qp] ∗ (mu(x) ∗(
displacement_gradient_x (1)+
displacement_gradient_y (0))) ;

elem_sigma (3) += JxW[qp] ∗ ((lambda (x)+ 2∗mu(x)) ∗(
eps i l on_theta) + lambda (x) ∗(
displacement_gradient_y (1)+
displacement_gradient_x (0))) ;

}

// Get the average s t r e s s e s by d i v i d i ng by the element
volume

elem_sigma . s c a l e (1 . / elem−>volume ()) ;

// load elem_sigma data in to stress_system
f o r (unsigned i n t i =0; i <4; i++)
{

stress_dof_map . do f_ind i ce s (elem ,
stress_dof_indices_var , sigma_vars [i]) ;

// We are us ing CONSTANT MONOMIAL ba s i s func t i ons ,
hence we only need to get

// one dof index per va r i ab l e
dof_id_type dof_index = stres s_dof_ind ices_var [0] ;

i f ((s t ress_system . so lu t i on−>f i r s t_ l o ca l_ index () <=
dof_index) &&

A.2. Código do problema estrutural sem efeitos térmicos 39

(dof_index < stress_system . so lu t i on−>
las t_loca l_ index ()))

{
stress_system . so lu t i on−>se t (dof_index ,

elem_sigma (i)) ;
}

}

// Also , the von Mises s t r e s s
Number vonMises_value = std : : s q r t (0 . 5∗ (pow(elem_sigma (0)

− elem_sigma (1) , 2 .) +
pow(elem_sigma (1)

− elem_sigma
(4) , 2 .) +

pow(elem_sigma (4)
− elem_sigma
(0) , 2 .) +

6 .∗ (pow(
elem_sigma (2)
, 2 .))

)) ;

stress_dof_map . do f_ind i ce s (elem , stress_dof_indices_var ,
vonMises_var) ;

dof_id_type dof_index = stres s_dof_ind ices_var [0] ;
i f ((s t ress_system . so lu t i on−>f i r s t_ l o ca l_ index () <=

dof_index) &&
(dof_index < stress_system . so lu t i on−>las t_loca l_ index

()))
{

stress_system . so lu t i on−>se t (dof_index , vonMises_value)
;

}

40 APÊNDICE A. Códigos

}

f s . c l o s e () ;
// Should c a l l c l o s e and update when we s e t vec to r e n t r i e s

d i r e c t l y
stress_system . so lu t i on−>c l o s e () ;
s t ress_system . update () ;

}

Real N_section (const Real x) {
// s t e e l inne r and outer t r a c t i o n constant
const Real N_inner_pipe = 0 . e6 ;
const Real N_outer_pipe = 0 . e6 ;

// i n s u l a t i o n conduc t i v i ty constant
const Real N_insulat ion = 0 . 0 ;

i f (x >= R_i () && x <= R_i ()+t_i ())
r e turn x∗N_inner_pipe ;

e l s e i f (x > R_i () + t_i () && x < R_e()−t_e ())
re turn x∗N_insulat ion ;

e l s e i f (x >= R_e() − t_e () && x <= R_e())
re turn x∗N_outer_pipe ;

e l s e {
std : : s t r i n g s1 (" Function␣k_cond␣ c a l l e d ␣ f o r ␣x␣out␣ o f ␣

domain␣bonds ! ") ;
e r r o r (s1) ;

}

}

Real N_global (const Real x) {

A.3. Código do problema estrutural com efeitos térmicos 41

// s t e e l inne r and outer t r a c t i o n constant
const Real N_inner_pipe = 20 . e6 ;
const Real N_outer_pipe = 20 . e6 ;

// i n s u l a t i o n conduc t i v i ty constant
const Real N_insulat ion = 0 . 0 ;

i f (x >= R_i () && x <= R_i ()+t_i ())
r e turn N_inner_pipe ;

e l s e i f (x > R_i () + t_i () && x < R_e()−t_e ())
re turn N_insulat ion ;

e l s e i f (x >= R_e() − t_e () && x <= R_e())
re turn N_outer_pipe ;

e l s e {
std : : s t r i n g s1 (" Function␣k_cond␣ c a l l e d ␣ f o r ␣x␣out␣ o f ␣

domain␣bonds ! ") ;
e r r o r (s1) ;

}

}

A.3 Código do problema estrutural com efeitos térmicos

A.4 Código do problema da análise global

A.4.1 Header - Protótipo das classes e das funções

//
// Cable_Equation . h
//
//
// Created by rodr i go brogg i on 16/10/14.
//

42 APÊNDICE A. Códigos

//

#i f n d e f _Cable_Equation_h
#de f i n e _Cable_Equation_h

//STD l i b r a r y
#inc lude <iostream>
#inc lude <algor ithm>
#inc lude <sstream>
#inc lude <math . h>
#inc lude <s t r i ng>
#inc lude <set>
#inc lude <vector>

//Boost l i b r a r y
#inc lude<boost / scoped_ptr . hpp>

//Libmesh l i b r a r y
#inc lude " l ibmesh / l ibmesh . h "
#inc lude " l ibmesh /mesh . h "
#inc lude " l ibmesh /mesh_generation . h "
#inc lude " l ibmesh / exodusII_io . h "
#inc lude " l ibmesh / gnuplot_io . h "
#inc lude " l ibmesh / equation_systems . h "
#inc lude " l ibmesh / f e . h "
#inc lude " l ibmesh /quadrature_gauss . h "
#inc lude " l ibmesh /dof_map . h "
#inc lude " l ibmesh / sparse_matrix . h "
#inc lude " l ibmesh /numeric_vector . h "
#inc lude " l ibmesh /dense_matrix . h "
#inc lude " l ibmesh /dense_vector . h "
#inc lude " l ibmesh / l inear_impl i c i t_sys tem . h "
#inc lude " l ibmesh / per f_log . h "
#inc lude " l ibmesh /boundary_info . h "
#inc lude " l ibmesh / u t i l i t y . h "

// To impose D i r i c h l e t boundary cond i t i on s
#inc lude " l ibmesh / d i r i ch l e t_bounda r i e s . h "
#inc lude " l ibmesh / ana ly t i c_ func t i on . h "

A.4. Código do problema da análise global 43

#inc lude " l ibmesh / zero_funct ion . h "
#inc lude " l ibmesh /string_to_enum . h "
#inc lude " l ibmesh / getpot . h "

#inc lude " l ibmesh /dense_submatrix . h "
#inc lude " l ibmesh /dense_subvector . h "

#inc lude " l ibmesh /elem . h "

/∗General a u x i l i a r y f unc t i on s used
in both methods∗/

i n l i n e l ibMesh : : Real denominator (const l ibMesh : : Real x , const
l ibMesh : : Real y , const l ibMesh : : Real exp) { re turn pow((pow(x
, 2 .)+pow(y , 2 .)) , exp) ; } ;

i n l i n e l ibMesh : : Real sgn (const l ibMesh : : Real x) { re turn (x > 0)
? 1 . : (x == 0 ? 0 . : −1.0) ; } ;

// Local h o r i z on t a l f o r c e (depends on the l o c a l cab l e
p o s i t i o n i n g and on i t s d e r i v a t i v e)

l ibMesh : : Real fx (const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

// Local v e r t i c a l f o r c e (depends on the l o c a l cab l e p o s i t i o n i n g
and on i t s d e r i v a t i v e)

l ibMesh : : Real fy (const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

// wrapper o f exact s o l u t i o n used to impose D i r i c h l e t c ond i t i on s
void exact_solution_wrapper (l ibMesh : : DenseVector<libMesh : : Number

> & output , const l ibMesh : : Point & p , const l ibMesh : : Real) ;

/∗Aux i l i a ry f unc t i on s f o r the weak
formulat ion o f C l a s s i c method∗/

44 APÊNDICE A. Códigos

l ibMesh : : Real LA1(const l ibMesh : : Real xl , const l ibMesh : : Real y l
) ;

l ibMesh : : Real LA2(const l ibMesh : : Real xl , const l ibMesh : : Real y l
) ;

l ibMesh : : Real LB1(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

l ibMesh : : Real LB2(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

l ibMesh : : Real A11(const l ibMesh : : Real xl , const l ibMesh : : Real y l)
;

l ibMesh : : Real A12(const l ibMesh : : Real xl , const l ibMesh : : Real y l)
;

l ibMesh : : Real A21(const l ibMesh : : Real xl , const l ibMesh : : Real y l)
;

l ibMesh : : Real A22(const l ibMesh : : Real xl , const l ibMesh : : Real y l)
;

l ibMesh : : Real B11(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

l ibMesh : : Real B12(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

l ibMesh : : Real B21(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

l ibMesh : : Real B22(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

l ibMesh : : Real C11(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

A.4. Código do problema da análise global 45

l ibMesh : : Real C12(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

l ibMesh : : Real C21(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

l ibMesh : : Real C22(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

void assemble_cable_linear_CLASSIC (libMesh : : EquationSystems & es
, const std : : s t r i n g & system_name) ;

/∗Aux i l i a ry f unc t i on s f o r the weak
formulat ion o f C l a s s i c method∗/

libMesh : : Real LA1(const l ibMesh : : Real xl , const l ibMesh : : Real yl
, const l ibMesh : : Real t) ;

l ibMesh : : Real LA2(const l ibMesh : : Real xl , const l ibMesh : : Real yl
, const l ibMesh : : Real t) ;

l ibMesh : : Real LB1(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real LB2(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real LB3(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real A11(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

46 APÊNDICE A. Códigos

l ibMesh : : Real A12(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

l ibMesh : : Real A13(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

l ibMesh : : Real A21(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

l ibMesh : : Real A22(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

l ibMesh : : Real A23(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

l ibMesh : : Real B11(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real B12(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real B13(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real B21(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real B22(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real B23(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

A.4. Código do problema da análise global 47

l ibMesh : : Real C11(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real C12(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real C13(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real C21(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real C22(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

l ibMesh : : Real C23(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) ;

void assemble_cable_linear_MIXED (libMesh : : EquationSystems & es ,
const std : : s t r i n g & system_name) ;

//This c l a s s conta in s the problem ’ s data , i n c l ud ing cur r ent
p r o f i l e and i n i t i a l approximation s o l u t i o n f o r the Newton ’ s
method .

c l a s s Cable_Problem_Data {

// Var i ab l e s input Data
libMesh : : Real cable_length ;
l ibMesh : : Real cable_diameter ;
l ibMesh : : Real c a b l e_ax i a l_ s t i f f n e s s ;
l ibMesh : : Real cable_submerged_weight ;

48 APÊNDICE A. Códigos

l ibMesh : : Real ocean_depth ;
l ibMesh : : Real current_modulus ;

//Function input Data :
//This i s a po in t e r to a func t i on that conta in s the cur r ent

p r o f i l e f unc t i on (V(y) = current_modulus ∗(∗ cu r r en t_p ro f i l e
(y)))

l ibMesh : : Real (∗ cu r r en t_p ro f i l e) (const l ibMesh : : Real y) ;

//Function input Data
void (∗ i n i t i a l _ s o l u t i o n) (l ibMesh : : DenseVector<libMesh : : Number>

& xy , const l ibMesh : : Point & s , const l ibMesh : : Real) ;

pub l i c :

Cable_Problem_Data (const l ibMesh : : Real length , const l ibMesh : :
Real diameter ,

const l ibMesh : : Real a x i a l_ s t i f f n e s s , const
l ibMesh : : Real s_weight ,

const l ibMesh : : Real o_depth , const l ibMesh
: : Real c_modulus ,

l ibMesh : : Real (∗ f unc t i on1) (const l ibMesh : :
Real) ,

void (∗ f unc t i on2) (l ibMesh : : DenseVector<
libMesh : : Number> &, const l ibMesh : : Point
&, const l ibMesh : : Real)) ;

Cable_Problem_Data (std : : i s t ream & INPUT, libMesh : : Real (∗
f unc t i on1) (const l ibMesh : : Real) ,

void (∗ f unc t i on2) (l ibMesh : : DenseVector<
libMesh : : Number> &, const l ibMesh : : Point
&, const l ibMesh : : Real)) ;

// Provid ing data f unc t i on s
i n l i n e l ibMesh : : Real L() const { re turn cable_length ; } ;
i n l i n e l ibMesh : : Real EA() const { re turn c ab l e_ax i a l_ s t i f f n e s s

; } ;
i n l i n e l ibMesh : : Real q () const { re turn cable_submerged_weight

; } ;

A.4. Código do problema da análise global 49

i n l i n e l ibMesh : : Real Cd() const { re turn ((0 . 5) ∗0.47∗
cable_diameter ∗1000 .∗ (pow(current_modulus , 2 .))) ; } ;

i n l i n e l ibMesh : : Real O_Depth () const { re turn ocean_depth ; } ;

//Current p r o f i l e
i n l i n e l ibMesh : : Real f (const l ibMesh : : Real y) const { re turn (

(∗ cu r r en t_p ro f i l e) (y)) ; } ;
//Current p r o f i l e d e r i v a t i v e
i n l i n e l ibMesh : : Real f l (const l ibMesh : : Real y) const { re turn

(((∗ cu r r en t_p ro f i l e) (y+0.0001) − (∗ cu r r en t_p ro f i l e) (y
−0.0001)) / (0 . 0002)) ; } ;

void in i t i a l_so lu t i on_wrappe r (l ibMesh : : DenseVector<libMesh : :
Number> & xy , const l ibMesh : : Point & s ,

const l ibMesh : : Real t = 0) const
{ re turn (∗ i n i t i a l _ s o l u t i o n)

(xy , s , t) ; } ;

void p r in t () const ;

f r i e nd c l a s s Cable_Equation ;

f r i e nd c l a s s Cable_Equation_CLASSIC ;

f r i e nd c l a s s Cable_Equation_MIXED ;

} ;

c l a s s Cable_Equation {

protec ted :
s t a t i c Cable_Problem_Data data ;
GetPot command_line ;

pub l i c :

50 APÊNDICE A. Códigos

//This con s t ruc to r i n i t i a l i z e s i n t e r n a l data (phy s i c a l f o r
data s t r u c tu r e and numerica l f o r GetPot ob j e c t)

Cable_Equation (const Cable_Problem_Data & Data , const GetPot &
Command_Line) ;

//This func t i on s o l v e the problem with the data provided and
g i v e s output in gnuplot format

v i r t u a l void solve_cable_problem_complete () = 0 ;

// Pr in t s phy s i c a l data
void print_data () const { data . p r i n t () ; } ;

/∗Aux i l i a ry fun t i on s worth f o r both
C l a s s i c and Mixed methods∗/

// Local h o r i z on t a l f o r c e (depends on the l o c a l cab l e
p o s i t i o n i n g and on i t s d e r i v a t i v e)

f r i e nd libMesh : : Real fx (const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

// Local v e r t i c a l f o r c e (depends on the l o c a l cab l e
p o s i t i o n i n g and on i t s d e r i v a t i v e)

f r i e nd libMesh : : Real fy (const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

// wrapper o f exact s o l u t i o n used to impose D i r i c h l e t
c ond i t i on s

f r i e nd void exact_solution_wrapper (l ibMesh : : DenseVector<
libMesh : : Number> & output , const l ibMesh : : Point & p , const
l ibMesh : : Real) ;

} ;

A.4. Código do problema da análise global 51

c l a s s Cable_Equation_CLASSIC : pub l i c Cable_Equation {

libMesh : : Mesh mesh ;

l ibMesh : : EquationSystems equation_systems ;

/∗Weak formulat ion c o e f f i c i e n t s −
Aux i l i a ry f unc t i on s to the
assembl ing func t i on ∗/

f r i e nd libMesh : : Real LA1(const l ibMesh : : Real xl , const l ibMesh
: : Real y l) ;

f r i e nd libMesh : : Real LA2(const l ibMesh : : Real xl , const l ibMesh
: : Real y l) ;

f r i e nd libMesh : : Real LB1(const l ibMesh : : Real x , const l ibMesh
: : Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

f r i e nd libMesh : : Real LB2(const l ibMesh : : Real x , const l ibMesh
: : Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

f r i e nd libMesh : : Real A11(const l ibMesh : : Real xl , const l ibMesh
: : Real y l) ;

f r i e nd libMesh : : Real A12(const l ibMesh : : Real xl , const l ibMesh
: : Real y l) ;

f r i e nd libMesh : : Real A21(const l ibMesh : : Real xl , const l ibMesh
: : Real y l) ;

f r i e nd libMesh : : Real A22(const l ibMesh : : Real xl , const l ibMesh
: : Real y l) ;

52 APÊNDICE A. Códigos

f r i e nd libMesh : : Real B11(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

f r i e nd libMesh : : Real B12(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

f r i e nd libMesh : : Real B21(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

f r i e nd libMesh : : Real B22(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

f r i e nd libMesh : : Real C11(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

f r i e nd libMesh : : Real C12(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

f r i e nd libMesh : : Real C21(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

f r i e nd libMesh : : Real C22(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real y l) ;

//This i s the most important func t i on : i t assemble the ac tua l
Newton l i n e a r system i t e r a t i o n

f r i e nd void assemble_cable_linear_CLASSIC (libMesh : :
EquationSystems & es , const std : : s t r i n g & system_name) ;

//Post−pro c e s s i ng func t i on − c a l c u l a t e s the t r a c t i o n from the
s o l v e r imp l i c i t problem

void compute_traction () ;

pub l i c :

// Constructor
Cable_Equation_CLASSIC(const Cable_Problem_Data & Data , const

GetPot & Command_Line , const l ibMesh : : LibMeshInit & INIT) ;

A.4. Código do problema da análise global 53

//Function that handles data and put toge the r a l l problem
parts , s o l v e by Newton ’ s method the problem and p r i n t s (
GNUPLOT format) the OUTPUT

void solve_cable_problem_complete () ;

} ;

c l a s s Cable_Equation_MIXED : pub l i c Cable_Equation {

libMesh : : Mesh mesh ;

l ibMesh : : EquationSystems equation_systems ;

/∗Weak formulat ion c o e f f i c i e n t s −
Aux i l i a ry f unc t i on s to the
assembl ing func t i on ∗/

f r i e nd libMesh : : Real LA1(const l ibMesh : : Real xl , const l ibMesh
: : Real yl , const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real LA2(const l ibMesh : : Real xl , const l ibMesh
: : Real yl , const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real LB1(const l ibMesh : : Real x , const l ibMesh
: : Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real LB2(const l ibMesh : : Real x , const l ibMesh
: : Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real LB3(const l ibMesh : : Real x , const l ibMesh
: : Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real A11(const l ibMesh : : Real xl , const l ibMesh
: : Real yl , const l ibMesh : : Real t) ;

54 APÊNDICE A. Códigos

f r i e nd libMesh : : Real A12(const l ibMesh : : Real xl , const l ibMesh
: : Real yl , const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real A13(const l ibMesh : : Real xl , const l ibMesh
: : Real yl , const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real A21(const l ibMesh : : Real xl , const l ibMesh
: : Real yl , const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real A22(const l ibMesh : : Real xl , const l ibMesh
: : Real yl , const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real A23(const l ibMesh : : Real xl , const l ibMesh
: : Real yl , const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real B11(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real B12(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real B13(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real B21(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real B22(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real B23(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

A.4. Código do problema da análise global 55

f r i e nd libMesh : : Real C11(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real C12(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real C13(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real C21(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real C22(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

f r i e nd libMesh : : Real C23(const l ibMesh : : Real x , const l ibMesh : :
Real y , const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) ;

//This i s the most important func t i on : i t assemble the ac tua l
Newton l i n e a r system i t e r a t i o n

f r i e nd void assemble_cable_linear_MIXED (libMesh : :
EquationSystems & es , const std : : s t r i n g & system_name) ;

pub l i c :

// Constructor
Cable_Equation_MIXED(const Cable_Problem_Data & Data , const

GetPot & Command_Line , const l ibMesh : : LibMeshInit & INIT) ;

//Function that handles data and put toge the r a l l problem
parts , s o l v e by Newton ’ s method the problem and p r i n t s (
GNUPLOT format) the OUTPUT

56 APÊNDICE A. Códigos

void solve_cable_problem_complete () ;

} ;

#end i f

A.4.2 Implementação das funções membro e auxiliares - source code

//
// Cable_Equation .C
//
//
// Created by rodr i go brogg i on 18/10/14.
//
//

#inc lude " Cable_Equation . h "

/∗Some f r i e nd
func t i on s
implementat ions ∗/

/∗Aux i l i a ry fun t i on s worth
f o r both C l a s s i c and
Mixed methods∗/

// Local h o r i z on t a l f o r c e (depends on the l o c a l cab l e
p o s i t i o n i n g and on i t s d e r i v a t i v e)

l ibMesh : : Real fx (const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) {

re turn (Cable_Equation : : data .Cd() ∗ sgn (Cable_Equation : : data . f (y
)∗ y l) ∗(pow(Cable_Equation : : data . f (y) , 2 .))∗pow(yl , 3) /
denominator (xl , yl , 3 . / 2 .)) ;

} ;

A.4. Código do problema da análise global 57

// Local v e r t i c a l f o r c e (depends on the l o c a l cab l e p o s i t i o n i n g
and on i t s d e r i v a t i v e)

l ibMesh : : Real fy (const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) {

re turn (Cable_Equation : : data . q () − Cable_Equation : : data .Cd() ∗
sgn (Cable_Equation : : data . f (y)∗ y l) ∗(pow(Cable_Equation : : data
. f (y) , 2 .))∗ x l ∗pow(yl , 2) /denominator (xl , yl , 3 . / 2 .)) ;

} ;

// wrapper o f exact s o l u t i o n used to impose D i r i c h l e t c ond i t i on s
void exact_solution_wrapper (l ibMesh : : DenseVector<libMesh : : Number

> & output , const l ibMesh : : Point & p , const l ibMesh : : Real) {

output (1) = Cable_Equation : : data .O_Depth () ;

} ;

//Cable_Problem_Data
func t i on s :

Cable_Problem_Data : : Cable_Problem_Data (const l ibMesh : : Real
length , const l ibMesh : : Real diameter ,

const l ibMesh : : Real
a x i a l_ s t i f f n e s s , const
l ibMesh : : Real

s_weight ,
const l ibMesh : : Real

o_depth , const l ibMesh
: : Real c_modulus ,

l ibMesh : : Real (∗ f unc t i on1
) (const l ibMesh : : Real)

58 APÊNDICE A. Códigos

,
void (∗ f unc t i on2) (l ibMesh

: : DenseVector<libMesh
: : Number> &, const
l ibMesh : : Point &,
const l ibMesh : : Real))
:

cable_length (l ength) ,
cable_diameter (
diameter) ,
c a b l e_ax i a l_ s t i f f n e s s (
a x i a l _ s t i f f n e s s) ,

cable_submerged_weight (
s_weight) , ocean_depth
(o_depth) ,
current_modulus (
c_modulus) ,

c u r r en t_p ro f i l e (func t i on1
) , i n i t i a l _ s o l u t i o n (
func t i on2) {} ;

Cable_Problem_Data : : Cable_Problem_Data (std : : i s t ream & INPUT,
libMesh : : Real (∗ f unc t i on1) (const l ibMesh : : Real) ,

void (∗ f unc t i on2) (l ibMesh
: : DenseVector<libMesh
: : Number> &, const
l ibMesh : : Point &,
const l ibMesh : : Real))
{

INPUT >> cable_length ;
INPUT >> cable_diameter ;
INPUT >> cab l e_ax i a l_ s t i f f n e s s ;
INPUT >> cable_submerged_weight ;
INPUT >> ocean_depth ;
INPUT >> current_modulus ;

c u r r en t_p ro f i l e = funct i on1 ;
i n i t i a l _ s o l u t i o n = func t i on2 ;

A.4. Código do problema da análise global 59

} ;

void Cable_Problem_Data : : p r i n t () const {

std : : cout<<" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗−PROBLEM␣
INFORMATION−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ "<<std : : endl<<
std : : endl ;

s td : : cout<<" Cable␣ l ength : ␣ "<<cable_length<<std : : endl ;
s td : : cout<<" Cable␣ diameter : ␣ "<<cable_diameter<<std : : endl ;
s td : : cout<<" Cable␣ a x i a l ␣ s t i f f n e s s : ␣ "<<cab l e_ax i a l_ s t i f f n e s s <<

std : : endl ;
s td : : cout<<" Cable␣submerged␣weight : ␣ "<<cable_submerged_weight

<<std : : endl ;
s td : : cout<<"Ocean␣depth : ␣ "<<ocean_depth<<std : : endl ;
s td : : cout<<" Current ␣modulus : ␣ "<<current_modulus<<std : : endl ;

s td : : o f s t ream in i t i a l_ so l u t i on_da ta ("
gnuplot_scr ipt_in i t ia l_xy_data ") ;

i n t n = 500 ;

const l ibMesh : : Real s tep = cable_length /n ;

l ibMesh : : DenseVector<libMesh : : Number> l o c a l (2) ;

f o r (i n t i = 0 ; i < n ; i++) {
in i t i a l_so lu t i on_wrappe r (l o c a l , s tep ∗ i) ;
i n i t i a l_ so l u t i on_da ta <<l o c a l (0)<<" \ t "<<l o c a l (1)<<std : :

endl ;
}

i n i t i a l_ so l u t i on_da ta . c l o s e () ;

s td : : cout<<" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗−PROBLEM␣
INFORMATION␣END−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ "<<std : : endl

60 APÊNDICE A. Códigos

<<std : : endl ;

} ;

//END Cable_Problem_Data func t i on s

//Cable_Equation
func t i on s :

Cable_Problem_Data Cable_Equation : : data (0 . , 0 . , 0 . , 0 . , 0 . , 0 . ,NULL,
NULL) ;

Cable_Equation : : Cable_Equation (const Cable_Problem_Data & Data ,
const GetPot & Command_Line) : command_line (Command_Line) {

data . cable_length = Data . cable_length ;
data . cable_diameter = Data . cable_diameter ;
data . c ab l e_ax i a l_ s t i f f n e s s = Data . c ab l e_ax i a l_ s t i f f n e s s ;
data . cable_submerged_weight = Data . cable_submerged_weight ;
data . ocean_depth = Data . ocean_depth ;
data . current_modulus = Data . current_modulus ;

data . c u r r en t_p ro f i l e = Data . c u r r en t_p ro f i l e ;
data . i n i t i a l _ s o l u t i o n = Data . i n i t i a l _ s o l u t i o n ;

} ;

//END Cable_Equation func t i on s

//
Cable_Equation_CLASSIC

A.4. Código do problema da análise global 61

f un c t i on s :

Cable_Equation_CLASSIC : : Cable_Equation_CLASSIC(const
Cable_Problem_Data & Data , const GetPot & Command_Line ,

const l ibMesh : :
LibMeshInit &
INIT) :
Cable_Equation
(Data ,
Command_Line) ,
mesh (INIT .

comm()) ,
equation_systems (

mesh) { } ;

void Cable_Equation_CLASSIC : : solve_cable_problem_complete () {

// Create a mesh with user−de f ined dimension .
// Read libMesh : : Number o f e lements from command l i n e
i n t ps = 200 ;
i f (command_line . s earch (1 , "−n "))

ps = command_line . next (ps) ;

// Read FE order from command l i n e
std : : s t r i n g order = "SECOND" ;
i f (command_line . s earch (2 , "−Order " , "−o "))

order = command_line . next (order) ;

// Read number non l i n e a r l oops
i n t n l_steps = 200 ;
i f (command_line . s earch (1 , "−n l l "))

n l_steps = command_line . next (n l_steps) ;

// Read number l i n e a r s t ep s
i n t l_steps = 500 ;

62 APÊNDICE A. Códigos

i f (command_line . s earch (1 , "−nl "))
l_steps = command_line . next (l_steps) ;

l ibMesh : : Real to l_nl = 1800 ;
// libMesh : : Real tol_exp = −3.;
i f (command_line . s earch (1 , "−t o l "))

to l_nl = command_line . next (to l_nl) ;

// Generate 1D mesh in the i n t e r v a l [0 ,L] with number o f
e lements ps and order " order " .

l ibMesh : : MeshTools : : Generat ion : : bu i l d_ l ine (mesh ,
ps ,
0 . , data .L() ,
(order == "FIRST") ?

libMesh : :EDGE2 : l ibMesh
: :EDGE3) ;

// Pr in t ing mesh i n f o to the s c r e en
std : : cout<<" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗−MESH␣INFORMATION
−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ "<<std : : endl<<std : : endl
;

mesh . p r in t_ in fo () ;
s td : : cout<<" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗−MESH␣INFORMATION␣

END−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ "<<std : : endl<<std : : endl ;

// Refresh mesh in to equation_system
equation_systems . r e i n i t () ;

// Dec lare the system and i t s v a r i a b l e s (and r e l a t i v e o rde r s)
l ibMesh : : L inear Impl i c i tSys tem & system = equation_systems .

add_system<libMesh : : L inear Impl ic i tSystem> (" Catenary ") ;

unsigned i n t x_var = system . add_variable (" x " , l ibMesh : :
U t i l i t y : : string_to_enum<libMesh : : Order> (order)) ;

unsigned i n t y_var = system . add_variable (" y " , l ibMesh : :
U t i l i t y : : string_to_enum<libMesh : : Order> (order)) ;

// Give the system a po in t e r to the assembly func t i on

A.4. Código do problema da análise global 63

system . attach_assemble_funct ion (assemble_cable_linear_CLASSIC)
;

// Construct two D i r i c h l e t boundary cond i t i ons , one omogeneus
and the other nonomogeneus ob j e c t

// Ind i c a t e which boundary IDs we impose the BC on
std : : set<libMesh : : boundary_id_type> boundary_ids_omogeneus ;

// the dim==1 mesh has two boundar ies with IDs 0 and 1
boundary_ids_omogeneus . i n s e r t (0) ;

// Create a vec to r s t o r i n g the va r i a b l e numbers which the BC
app l i e s to

std : : vector<unsigned int> variables_omogeneus (2) ;
variables_omogeneus [0] = x_var ;
variables_omogeneus [1] = y_var ;

// Create a ZeroFunction to i n i t i a l i z e d i r i c h l e t_bc
libMesh : : ZeroFunction<> z f ;

// Create a Dir ich letBoundary ob j e c t with pos i t i on , v a r i a b l e s
and va lues

l ibMesh : : Dir ich letBoundary dir ichlet_bc_omogeneus (
boundary_ids_omogeneus , variables_omogeneus , &z f) ;

// We must add the D i r i c h l e t boundary cond i t i on _before_
// we c a l l equation_systems . i n i t ()
system . get_dof_map () . add_dirichlet_boundary (

dir ichlet_bc_omogeneus) ;

// Construct a D i r i c h l e t non−homogeneus boundary cond i t i on
ob j e c t

// Ind i c a t e which boundary IDs we impose the BC on
std : : set<libMesh : : boundary_id_type> boundary_ids ;

boundary_ids . i n s e r t (1) ;

64 APÊNDICE A. Códigos

// Create a vec to r s t o r i n g the va r i a b l e numbers which the BC
app l i e s to

std : : vector<unsigned int> va r i a b l e s (1) ;
v a r i a b l e s [0] = y_var ;

// Create an Analyt icFunct ion ob j e c t that we use to p r o j e c t
the BC

// This func t i on j u s t c a l l s the func t i on exact_so lut ion v ia
exact_solution_wrapper

l ibMesh : : Analyt icFunct ion<> exact_so lut ion_object (
exact_solution_wrapper) ;

l ibMesh : : Dir ich letBoundary d i r i c h l e t_bc (boundary_ids ,
va r i ab l e s , &exact_so lut ion_object) ;

// We must add the D i r i c h l e t boundary cond i t i on _before_
// we c a l l equation_systems . i n i t ()
system . get_dof_map () . add_dirichlet_boundary (d i r i c h l e t_bc) ;

// Also , i n i t i a l i z e an Expl i c i tSystem to s t o r e t r a c t i o n
libMesh : : Expl i c i tSystem& stress_system = equation_systems .

add_system<libMesh : : Expl ic i tSystem> (" TractionSystem ") ;

s t ress_system . add_variable ("T" , l ibMesh : :CONSTANT, libMesh : :
MONOMIAL) ;

// I n i t i a l i z e data s t r u c t u r e s f o r equation_system ob j e c t and
pr in t i t s in fo rmat ion

equation_systems . i n i t () ;

s td : : cout<<" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗−EQUATION␣SYSTEM␣
INFORMATION−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ "<<std : : endl
<<std : : endl ;

equation_systems . p r in t_ in fo () ;
s td : : cout<<" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗−EQUATION␣SYSTEM␣

INFORMATION␣END−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ "<<std : : endl
<<std : : endl ;

A.4. Código do problema da análise global 65

//Create a performance−l o gg ing
libMesh : : PerfLog per f_log (" Systems␣Catenary ") ;

//Get a r e f e r e n c e to the Catenary system
libMesh : : L inear Impl i c i tSys tem& catenary_stat ic_system =

equation_systems . get_system<libMesh : : L inear Impl i c i tSystem >(
" Catenary ") ;

// Number o f s t ep s and t o l e r an c e c r i t e r i o n f o r the non l in ea r
i t e r a t i o n s

const unsigned i n t n_nonl inear_steps = nl_steps ;
const l ibMesh : : Real non l inea r_to l e rance = to l_nl ;

// I t i s convenient a l s o to d e f i n e a max l i n e a r s o l v e r
i t e r a t i o n s f o r the l i n e a r system when the convergence i s
not c e r t a i n

equation_systems . parameters . set<unsigned int >(" l i n e a r ␣ s o l v e r ␣
maximum␣ i t e r a t i o n s ") = l_steps ;

// Pro j e c t an i n i t i a l s o l u t i o n with an Analyt icFunct ion ob j e c t :

// This func t i on j u s t c a l l s the func t i on i n i t i a l _ s o l u t i o n v ia
in i t i a l_so lu t i on_wrappe r

l ibMesh : : Analyt icFunct ion<> in i t i a l_ s o l u t i o n_ob j e c t (∗
Cable_Equation : : data . i n i t i a l _ s o l u t i o n) ;

//Using an i n i t i a l exact s o l u t i o n i t i s proected in the
aproximated f un c t i o n a l space

system . p ro j e c t_so lu t i on (& i n i t i a l_ s o l u t i o n_ob j e c t) ;

// P lo t t i ng the i n i t i a l " s o l u t i o n "
l ibMesh : : GnuPlotIO p lo t1 (mesh , " I n i t i a l ␣ p o s i t i o n ␣CLASSIC" ,

l ibMesh : : GnuPlotIO : :GRID_ON) ;
p lo t1 . write_equation_systems (" gnuplot_script_init ial_CLASSIC " ,

equation_systems) ;

66 APÊNDICE A. Códigos

// Get a copy o f the non l in ea r cur r ent i t e r a t i o n s o l u t i o n (to
t e s t whether to e x i t or not the loop)

l ibMesh : : AutoPtr<libMesh : : NumericVector<libMesh : : Number> >
las t_non l inear_so ln (catenary_stat ic_system . so lu t i on−>clone
()) ;

// Se t t i ng l i n e a r s o l v e t o l e r an c e
const l ibMesh : : Real i n i t i a l_ l i n e a r_ s o l v e r_ t o l = 1 . e−10;
equation_systems . parameters . set<libMesh : : Real> (" l i n e a r ␣ s o l v e r

␣ t o l e r an c e ") = i n i t i a l_ l i n e a r_ s o l v e r_ t o l ;

// Beginning non l i n ea r loop
f o r (unsigned i n t l =0; l<n_nonl inear_steps ; ++l) {

// Update l a s t non l i n ea r s o l u t i o n
las t_nonl inear_so ln−>zero () ;
la s t_nonl inear_so ln−>add (∗ catenary_stat ic_system . s o l u t i o n) ;

// Assemble and so l v e l i n e a r system
per f_log . push (" l i n e a r ␣ s o l v e ") ;
equation_systems . get_system (" Catenary ") . s o l v e () ;
per f_log . pop (" l i n e a r ␣ s o l v e ") ;

// Compute the d i f f e r e n c e between cur rent and l a s t non l in ea r
i t e r a t i o n s

las t_nonl inear_so ln−>add (−1. , ∗ catenary_stat ic_system .
s o l u t i o n) ;

la s t_nonl inear_so ln−>c l o s e () ;

// Compute the L2 norm and the H1 o f the s o l u t i o n d i f f e r e n c e
:

const l ibMesh : : Real norm_delta = system . calculate_norm (∗
l a s t_nonl inear_so ln , l ibMesh : : L2) ;

const l ibMesh : : Real normh1 = system . calculate_norm (∗
l a s t_nonl inear_so ln , l ibMesh : : H1) ;

A.4. Código do problema da análise global 67

// Get the number o f i t e r a t i o n s r equ i r ed to s o l v e the l i n e a r
system and i t s f i n a l r e s i d u a l

const unsigned i n t n_ l i n ea r_ i t e r a t i on s =
catenary_stat ic_system . n_ l i n ea r_ i t e r a t i on s () ;

const l ibMesh : : Real f i n a l_ l i n e a r_ r e s i d u a l =
catenary_stat ic_system . f i n a l_ l i n e a r_ r e s i d u a l () ;

// Pr int out the convergence i n f o f o r both l i n e a r and
non l in ea r i t e r a t i o n s

std : : cout << "−−−−−−−−−−−Newton : ␣ "<<l<<"−th␣ step ␣
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−␣ "<<std : : endl ;

s td : : cout << " Linear ␣ s o l v e r ␣ converged ␣ at ␣ s tep : ␣ " <<
n_l in ea r_ i t e r a t i on s <<std : : endl

<< " , ␣ f i n a l ␣ r e s i d u a l : ␣ "<< f i n a l_ l i n e a r_ r e s i d u a l <<std : : endl
<< " ␣␣Nonl inear ␣ convergence : ␣ | | u␣−␣u_old | | _L2␣=␣ " <<

norm_delta <<std : : endl
<< " ␣␣Nonl inear ␣ convergence : ␣ | | u␣−␣u_old | |_H1␣=␣ " << normh1

<< std : : endl ;
s td : : cout << "
−−−
␣ "<<std : : endl ;

// Terminate s o l u t i o n i t e r a t i o n i f the d i f f e r e n c e between
l a s t and cur rent non l i n ea r s o l u t i o n s i s s u f f i c i e n t l y
smal l and i f the most r e c en t l i n e a r system was so lved to
a s u f f i c i e n t t o l e r an c e

i f ((norm_delta < non l inea r_to l e rance) && (
catenary_stat ic_system . f i n a l_ l i n e a r_ r e s i d u a l () <
non l inea r_to l e rance)) {

std : : cout << " ␣Nonl inear ␣ s o l v e r ␣ converged ␣ at ␣ s tep ␣ "
<< l
<< std : : endl ;
break ;

}

// Decrease the l i n e a r system to l e r an c e . To obta in the
quadrat i c convergence with Newton method the l i n e a r

68 APÊNDICE A. Códigos

system to l e r an c e needs to dec r ea s e as we get c l o s e r to
the s o l u t i o n .

// equation_systems . parameters . set<libMesh : : Real> (" l i n e a r
s o l v e r t o l e r an c e ") =

// std : : min (U t i l i t y : : pow<2>(f i n a l_ l i n e a r_ r e s i d u a l) ,
i n i t i a l_ l i n e a r_ s o l v e r_ t o l) ;

} // end non l i n ea r loop

// Post−proce s s the s o l u t i o n to compute the s t r e s s e s
compute_traction () ;

l ibMesh : : GnuPlotIO p lo t (mesh , " S ta t i onary ␣ po s i t i o n ␣ c l a s s i c " ,
l ibMesh : : GnuPlotIO : :GRID_ON) ;

p l o t . write_equation_systems (" gnuplot_script_CLASSIC " ,
equation_systems) ;

r e turn ;

} ;

/∗Weak formulat ion
c o e f f i c i e n t s
d e f i n i t i o n f o r
CLASSIC method∗/

libMesh : : Real LA1(const l ibMesh : : Real xl , const l ibMesh : : Real y l
) {

re turn (Cable_Equation : : data .EA() ∗(denominator (xl , yl , 0 . 5) −1.)
∗ x l /denominator (xl , yl , 0 . 5)) ;

} ;

l ibMesh : : Real LA2(const l ibMesh : : Real xl , const l ibMesh : : Real y l
) {

A.4. Código do problema da análise global 69

r e turn (Cable_Equation : : data .EA() ∗(denominator (xl , yl , 0 . 5) −1.)
∗ y l /denominator (xl , yl , 0 . 5)) ;

} ;

l ibMesh : : Real LB1(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) {

re turn (denominator (xl , yl , 0 . 5) ∗ fx (x , y , xl , y l)) ;

} ;

l ibMesh : : Real LB2(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) {

re turn (denominator (xl , yl , 0 . 5) ∗ fy (x , y , xl , y l)) ;

} ;

l ibMesh : : Real A11(const l ibMesh : : Real xl , const l ibMesh : : Real y l)
{

re turn (Cable_Equation : : data .EA() ∗(denominator (xl , yl , 3 . / 2 .)−
pow(yl , 2)) /(denominator (xl , yl , 3 . / 2 .))) ;

} ;

l ibMesh : : Real A12(const l ibMesh : : Real xl , const l ibMesh : : Real y l)
{

re turn (Cable_Equation : : data .EA() ∗ x l ∗ y l /(denominator (xl , yl
, 3 . / 2 .))) ;

} ;

l ibMesh : : Real A21(const l ibMesh : : Real xl , const l ibMesh : : Real y l)
{

70 APÊNDICE A. Códigos

r e turn (Cable_Equation : : data .EA() ∗ x l ∗ y l /(denominator (xl , yl
, 3 . / 2 .))) ;

} ;

l ibMesh : : Real A22(const l ibMesh : : Real xl , const l ibMesh : : Real y l)
{

re turn (Cable_Equation : : data .EA() ∗(denominator (xl , yl , 3 . / 2 .)−
pow(xl , 2 .)) /(denominator (xl , yl , 3 . / 2 .))) ;

} ;

l ibMesh : : Real B11(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) {

re turn (−2.∗Cable_Equation : : data .Cd() ∗ sgn (Cable_Equation : :
data . f (y)∗ y l) ∗(pow(Cable_Equation : : data . f (y) , 2 .))∗ x l ∗pow(yl
, 3 .) /(denominator (xl , yl , 2 .))) ;

} ;

l ibMesh : : Real B12(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) {

re turn (Cable_Equation : : data .Cd() ∗ sgn (Cable_Equation : : data . f
(y)∗ y l) ∗(pow(Cable_Equation : : data . f (y) , 2 .))∗

(3 .∗pow(xl , 2 .) ∗pow(yl , 2 .) + pow(yl , 4 .)) /(denominator
(xl , yl , 2 .))) ;

} ;

l ibMesh : : Real B21(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) {

re turn ((Cable_Equation : : data . q () ∗ x l /denominator (xl , yl , 0 . 5))
+ Cable_Equation : : data .Cd() ∗

A.4. Código do problema da análise global 71

sgn (Cable_Equation : : data . f (y)∗ y l) ∗(pow(
Cable_Equation : : data . f (y) , 2 .)) ∗(pow(xl , 2 .) ∗pow(
yl , 2 .) − pow(yl , 4 .)) /(denominator (xl , yl , 2 .))) ;

} ;

l ibMesh : : Real B22(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) {

re turn ((Cable_Equation : : data . q () ∗ y l /denominator (xl , yl , 0 . 5))
− 2∗Cable_Equation : : data .Cd() ∗

sgn (Cable_Equation : : data . f (y)∗ y l) ∗(pow(
Cable_Equation : : data . f (y) , 2 .)) ∗(pow(xl , 3 .) ∗ y l) /(
denominator (xl , yl , 2 .))) ;

} ;

l ibMesh : : Real C11(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) { re turn 0 ;
} ;

l ibMesh : : Real C12(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) {

re turn (2 .∗Cable_Equation : : data .Cd() ∗ sgn (Cable_Equation : :
data . f (y)∗ y l)∗Cable_Equation : : data . f (y)∗

Cable_Equation : : data . f l (y) ∗(pow(yl , 3 .)) /(
denominator (xl , yl , 1 .))) ;

} ;

l ibMesh : : Real C21(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) { re turn 0 ;
} ;

l ibMesh : : Real C22(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real y l) {

72 APÊNDICE A. Códigos

r e turn (−2.∗Cable_Equation : : data .Cd() ∗ sgn (Cable_Equation : :
data . f (y)∗ y l)∗Cable_Equation : : data . f (y)∗Cable_Equation : :
data . f l (y)∗ x l ∗(pow(yl , 2)) /(denominator (xl , yl , 1 .))) ;

} ;

/∗Assemble
func t i on f o r
C l a s s i c
method∗/

void assemble_cable_linear_CLASSIC (libMesh : : EquationSystems& es ,
const std : : s t r i n g& system_name) {

// Confirm i f we are assembl ing the r i g h t system
libmesh_assert_equal_to (system_name , " Catenary ") ;

// Gett ing r e f e r e n c e to the mesh ob j e c t
const l ibMesh : : MeshBase& mesh = es . get_mesh () ;

// Get dimension o f the problem
const unsigned i n t dim = mesh . mesh_dimension () ;

// Get r e f e r e n c e to the catenary system and i t s v a r i a b l e s
number i d s

l ibMesh : : L inear Impl i c i tSys tem & catenary_stat ic_system = es .
get_system<libMesh : : L inear Impl i c i tSystem> (" Catenary ") ;

const unsigned i n t x_var = catenary_stat ic_system .
variable_number (" x ") ;

const unsigned i n t y_var = catenary_stat ic_system .
variable_number (" y ") ;

// get f i n i t e element type f o r " x " (same as the " y " type) −
both are d isp lacement types

A.4. Código do problema da análise global 73

l ibMesh : : FEType fe_disp_type = catenary_stat ic_system .
var iab le_type (x_var) ;

// Build a F in i t e Element ob j e c t (po in t e r) o f the s p e c i f i e d
type f o r the d isp lacement v a r i a b l e s

l ibMesh : : AutoPtr<libMesh : : FEBase> fe_disp (l ibMesh : : FEBase : :
bu i ld (dim , fe_disp_type)) ;

// Gauss quadrature r u l e f o r numerica l i n t e g r a t i o n apropr i a t e
f o r the disp lacement f i n i t e element type

libMesh : : QGauss q ru l e (dim , fe_disp_type .
default_quadrature_order ()) ;

// Se t t i ng the quadrature r u l e to the f i n i t e elemnt ob j e c t s (
fe_disp i s a po in t e r that w i l l r e f e r to d i f f e r e n t e lements)

fe_disp−>attach_quadrature_rule (&qru l e) ;

// Def in ing r e f e r e n c e s to c e l l−s p e c i f i c data that w i l l be used
to assemble the l i n e a r system :

// Get the Jacobian ∗ (quadratre weight) f o r each quadrature
po int po int

const std : : vector<libMesh : : Real>& JxW = fe_disp−>get_JxW() ;

// Get the element f unc t i on s eva luated at the quadrature
po in t s (f i r s t i nd i c e i s the quadrature po int and second i s
the node to witch the shape func t i on i s r e l a t e d)

const std : : vector<std : : vector<libMesh : : Real> >& phi = fe_disp
−>get_phi () ;

// Get the element f unc t i on s g r ad i en t s eva luated at the
quadrature po in t s (f i r s t i nd i c e i s the quadrature po int and
second i s the node to witch the shape func t i on i s r e l a t e d)
− , each element i s a l ibMesh : : RealGradient type (dphi [qp
] [i] (j) i s the g rad i en t o f the shape func t i on r e l a t e d to
the i t h node eva luated in the qpth quadrature po int in the
j th d i r e c t i o n)

const std : : vector<std : : vector<libMesh : : RealGradient> >& dphi =
fe_disp−>get_dphi () ;

74 APÊNDICE A. Códigos

// A r e f e r e n c e to the DofMap ob j e c t f o r t h i s system (t h i s
ob j e c t handles the index t r a n s l a t i o n from node and element
numbers to degree o f freedom)

const l ibMesh : : DofMap & dof_map = catenary_stat ic_system .
get_dof_map () ;

// Data s t r u c t u r e s to conta in the element mathix and r ight−
hand−s i d e vec to r (rhs) c on t r i bu t i on .

l ibMesh : : DenseMatrix<libMesh : : Number> Ke ;
l ibMesh : : DenseVector<libMesh : : Number> Fe ;

l ibMesh : : DenseSubMatrix<libMesh : : Number>
Kxx(Ke) , Kxy(Ke) ,
Kyx(Ke) , Kyy(Ke) ;

l ibMesh : : DenseSubVector<libMesh : : Number>
Fx(Fe) , Fy(Fe) ;

// This vec to r w i l l hold the element dof i n d i c e s (where in the
g l oba l system the element dof get mapped)

std : : vector<libMesh : : dof_id_type> do f_ind i ce s ;
s td : : vector<libMesh : : dof_id_type> dof_indices_x ;
std : : vector<libMesh : : dof_id_type> dof_indices_y ;

// Get element i t e r a t o r (the a c t i v e i s used f o r mesh−
re f inement s i t u a t i o n s)

l ibMesh : : MeshBase : : const_e lement_iterator e l = mesh .
act ive_loca l_elements_begin () ;

const l ibMesh : : MeshBase : : const_e lement_iterator end_el = mesh .
act ive_local_elements_end () ;

f o r (; e l != end_el ; ++e l) {

// Store the element we are working at in a po in t e r (elem)
const l ibMesh : : Elem∗ elem = ∗ e l ;

A.4. Código do problema da análise global 75

// Get the g l oba l dof f o r the cur rent element and the s i z e
o f them (how many nodes in each element)

dof_map . do f_ ind i ce s (elem , do f_ ind i ce s) ;
dof_map . do f_ ind i ce s (elem , dof_indices_x , x_var) ;
dof_map . do f_ ind i ce s (elem , dof_indices_y , y_var) ;

const unsigned i n t n_dofs = do f_ind i ce s . s i z e () ;
const unsigned i n t n_x_dofs = dof_indices_x . s i z e () ;
const unsigned i n t n_y_dofs = dof_indices_y . s i z e () ;

//Compute the c e l l−s p e c i f i c data mentioned e a r l i e r
fe_disp−>r e i n i t (elem) ;

//Prevent ca s e s in witch the re e x i x t s d i f e r e n t e lements
types in mesh (t r i a n g l e s and qu ad r i l a t e r a l)

Ke . r e s i z e (n_dofs , n_dofs) ;
Fe . r e s i z e (n_dofs) ;

//The DenseSubMatrix . r e p o s t i t i o n () member takes the (
row_offset , column_offset , row_size , column_size) .

// S im i l a r l y , the DenseSubVector . r e p o s i t i o n () member takes
the (row_offset , row_size)

Kxx . r e p o s i t i o n (x_var∗n_x_dofs , x_var∗n_x_dofs , n_x_dofs ,
n_x_dofs) ;

Kxy . r e p o s i t i o n (x_var∗n_x_dofs , y_var∗n_x_dofs , n_x_dofs ,
n_y_dofs) ;

Kyx . r e p o s i t i o n (y_var∗n_x_dofs , x_var∗n_y_dofs , n_y_dofs ,
n_x_dofs) ;

Kyy . r e p o s i t i o n (y_var∗n_x_dofs , y_var∗n_x_dofs , n_y_dofs ,
n_y_dofs) ;

Fx . r e p o s i t i o n (x_var∗n_x_dofs , n_x_dofs) ;
Fy . r e p o s i t i o n (y_var∗n_y_dofs , n_y_dofs) ;

//Build element matrix and RHS us ing numerica l i n t e g r a t i o n (
note that the prev iu s s tep s o l u t i o n i s r equ i r ed hear)

f o r (unsigned i n t qp=0; qp<qru l e . n_points () ; qp++) {

76 APÊNDICE A. Códigos

// Values to hold prev iu s s o l u t i o n and i t s g rad i en t
l ibMesh : : Number x = 0 . ;
l ibMesh : : Number y = 0 . ;

l ibMesh : : Gradient grad_x ;
l ibMesh : : Gradient grad_y ;

//Compute prev iu s Newton i t e r a t e s o l u t i o n and g rad i en t s on
the cur r ent quadrature po int

f o r (unsigned i n t l =0; l<n_x_dofs ; l++) {

x += phi [l] [qp]∗ catenary_stat ic_system . cur r ent_so lu t i on
(dof_indices_x [l]) ;

y += phi [l] [qp]∗ catenary_stat ic_system . cur r ent_so lu t i on
(dof_indices_y [l]) ;

grad_x . add_scaled (dphi [l] [qp] , catenary_stat ic_system .
cur r ent_so lu t i on (dof_indices_x [l])) ;

grad_y . add_scaled (dphi [l] [qp] , catenary_stat ic_system .
cur r ent_so lu t i on (dof_indices_y [l])) ;

}

// Store computed va lue s
const l ibMesh : : Real x l = grad_x (0) ;
const l ibMesh : : Real y l = grad_y (0) ;

f o r (unsigned i n t i =0; i<n_x_dofs ; i++) {

Fx(i) += JxW[qp] ∗ (LA1(xl , y l)∗dphi [i] [qp] (0) − LB1(x , y , xl
, y l)∗phi [i] [qp] − A11(xl , y l)∗ x l ∗dphi [i] [qp] (0) − A12(
xl , y l)∗ y l ∗dphi [i] [qp] (0) +

B11(x , y , xl , y l)∗ x l ∗phi [i] [qp] + B12(x , y
, xl , y l)∗ y l ∗phi [i] [qp] + C11(x , y , xl ,
y l)∗x∗phi [i] [qp] + C12(x , y , xl , y l)∗y

A.4. Código do problema da análise global 77

∗phi [i] [qp]) ;

Fy(i) += JxW[qp] ∗ (LA2(xl , y l)∗dphi [i] [qp] (0) − LB2(x , y , xl
, y l)∗phi [i] [qp] − A21(xl , y l)∗ x l ∗dphi [i] [qp] (0) −

A22(xl , y l)∗ y l ∗dphi [i] [qp] (0) + B21(x , y
, xl , y l)∗ x l ∗phi [i] [qp] + B22(x , y , xl ,
y l)∗ y l ∗phi [i] [qp] + C21(x , y , xl , y l)∗
x∗phi [i] [qp] +

C22(x , y , xl , y l)∗y∗phi [i] [qp]) ;

f o r (unsigned i n t j =0; j<n_x_dofs ; j++) {

Kxx(i , j) += JxW[qp]∗((−A11(xl , y l)∗dphi [j] [qp] (0) ∗dphi [
i] [qp] (0)) + (B11(x , y , xl , y l)∗dphi [j] [qp] (0) ∗phi [i] [
qp]) +

(C11(x , y , xl , y l)∗phi [j] [qp]∗ phi [i
] [qp])) ; // Newton term

Kxy(i , j) += JxW[qp]∗((−A12(xl , y l)∗dphi [j] [qp] (0) ∗dphi [
i] [qp] (0)) + (B12(x , y , xl , y l)∗dphi [j] [qp] (0) ∗phi [i] [
qp]) +

(C12(x , y , xl , y l)∗phi [j] [qp]∗ phi [i
] [qp])) ; // Newton term

Kyx(i , j) += JxW[qp]∗((−A21(xl , y l)∗dphi [j] [qp] (0) ∗dphi [
i] [qp] (0)) + (B21(x , y , xl , y l)∗dphi [j] [qp] (0) ∗phi [i] [
qp]) +

(C21(x , y , xl , y l)∗phi [j] [qp]∗ phi [i
] [qp])) ; // Newton term

Kyy(i , j) += JxW[qp]∗((−A22(xl , y l)∗dphi [j] [qp] (0) ∗dphi [
i] [qp] (0)) + (B22(x , y , xl , y l)∗dphi [j] [qp] (0) ∗phi [i] [
qp]) +

(C22(x , y , xl , y l)∗phi [j] [qp]∗ phi [i
] [qp])) ; // Newton term

}

78 APÊNDICE A. Códigos

}

} // end o f the quadrature po int qp−loop

dof_map . heterogenously_constrain_element_matrix_and_vector (
Ke , Fe , do f_ ind i ce s) ;

catenary_stat ic_system . matrix−>add_matrix (Ke , do f_ ind i ce s) ;
catenary_stat ic_system . rhs−>add_vector (Fe , do f_ ind i ce s) ;

} // end o f element loop

re turn ;

} ;

/∗Post−pro c e s s i ng
func t i on f o r c l a s s i c
method to c a l c u l a t e
t r a c t i o n ∗/

void Cable_Equation_CLASSIC : : compute_traction () {

//Gett ing mesh r e f e r e n c e
const l ibMesh : : MeshBase& mesh = equation_systems . get_mesh () ;

//Gett ing dimension o f problem
const unsigned i n t dim = mesh . mesh_dimension () ;

//Gett ing r e f e r e n c e to the " E l a s t i c i t y " system that should be
a l r eady so lved

libMesh : : L inear Impl i c i tSys tem& system = equation_systems .
get_system<libMesh : : L inear Impl i c i tSystem >(" Catenary ") ;

//Gett ing v a r i a b l e s numbers
unsigned i n t displacement_vars [2] ;

A.4. Código do problema da análise global 79

displacement_vars [0] = system . variable_number (" x ") ;
d isplacement_vars [1] = system . variable_number (" y ") ;
const unsigned i n t u_var = system . variable_number (" x ") ;

//Gett ing dof map , f e type , c r e a t i n g f e Auto po in t e r and
attach quadrature r u l e

const l ibMesh : : DofMap& dof_map = system . get_dof_map () ;
l ibMesh : : FEType fe_type = dof_map . var iab le_type (u_var) ;
l ibMesh : : AutoPtr<libMesh : : FEBase> f e (l ibMesh : : FEBase : : bu i ld (

dim , fe_type)) ;
l ibMesh : : QGauss q ru l e (dim , fe_type . default_quadrature_order ()

) ;
fe−>attach_quadrature_rule (&qru l e) ;

// g e t t i n g Jacobianxweight and shape func t i on and i t s g r ad i en t s
r e f e r e n c e s

const std : : vector<libMesh : : Real>& JxW = fe−>get_JxW() ;
const std : : vector<std : : vector<libMesh : : Real> >& phi = fe−>

get_phi () ;
const std : : vector<std : : vector<libMesh : : RealGradient> >& dphi =

fe−>get_dphi () ;

// Also , get a r e f e r e n c e to the Expl i c i tSystem
libMesh : : Expl i c i tSystem& tract ion_system = equation_systems .

get_system<libMesh : : Expl ic i tSystem >(" TractionSystem ") ;
const l ibMesh : : DofMap& traction_dof_map = tract ion_system .

get_dof_map () ;
unsigned i n t T_var = tract ion_system . variable_number ("T") ;

// Storage f o r the s t r e s s dof i n d i c e s on each element
std : : vector< std : : vector<libMesh : : dof_id_type> >

dof_indices_var (system . n_vars ()) ;
s td : : vector<libMesh : : dof_id_type> tract ion_dof_indices_var ;

// To s t o r e the s t r e s s t en so r on each element
libMesh : : Real elem_sigma ;

// element i t e r a t o r to loop a l l over the mesh

80 APÊNDICE A. Códigos

l ibMesh : : MeshBase : : const_e lement_iterator e l = mesh .
act ive_loca l_elements_begin () ;

const l ibMesh : : MeshBase : : const_e lement_iterator end_el = mesh .
act ive_local_elements_end () ;

//mesh elements loop
f o r (; e l != end_el ; ++e l) {

const l ibMesh : : Elem∗ elem = ∗ e l ;

// g e t t i n g dof i n d i c e s map f o r the disp lacement v a r i a b l e s
f o r (unsigned i n t var=0; var <2; var++)

dof_map . do f_ ind i ce s (elem , dof_indices_var [var] ,
d isplacement_vars [var]) ;

// r e i n i t i l i z e element p r op e r t i e s
fe−>r e i n i t (elem) ;

// s e t to zero s t o r i n g element t r a c t i o n vec to r
elem_sigma = 0 ;

// loop over the quadrature po in t s (i t i s performed an
i n t e g r a t i o n o f the t r a c t i o n on each element and a f t e r

// i t , the i n t e g r a l i s d iv ided by the element area (volume or
l ength))

f o r (unsigned i n t qp=0; qp<qru l e . n_points () ; qp++) {

//Gett ing quadrature po int r−coo rd inate and dof number o f
the element on each va r i ab l e

const unsigned i n t n_x_dofs = dof_indices_var [0] . s i z e () ;
const unsigned i n t n_y_dofs = dof_indices_var [1] . s i z e () ;

// Get the g rad i en t s at t h i s quadrature po int :
// (i t i s the sum of a l l shape func t i on g rad i en t s weighted

by the r e s p e c t i v e dof d i sp lacement s o l u t i o n)
l ibMesh : : Gradient displacement_gradient_x ;
l ibMesh : : Gradient displacement_gradient_y ;

A.4. Código do problema da análise global 81

f o r (unsigned i n t l =0; l<n_x_dofs ; l++)
displacement_gradient_x . add_scaled (dphi [l] [qp] , system .

cur r ent_so lu t i on (dof_indices_var [0] [l])) ;

f o r (unsigned i n t l =0; l<n_y_dofs ; l++)
displacement_gradient_y . add_scaled (dphi [l] [qp] , system .

cur r ent_so lu t i on (dof_indices_var [1] [l])) ;

//The i n t e g r a t i o n i s done to have more p r e c i s e s t r e s s
cons tant s on each element (adding quadrature po int
con t r i bu t e) :

// to understand those terms see the e l a s t i c law and
congruence f o r ax i symmetr ica l problems in c y l i n d r i c a l
c oo rd ina t e s

elem_sigma += JxW[qp] ∗ (data .EA() ∗(s q r t (
displacement_gradient_x (0) ∗displacement_gradient_x (0) +
displacement_gradient_y (0) ∗displacement_gradient_y (0))
−1)) ;

}

// Get the average s t r e s s e s by d i v i d i ng by the element
volume

elem_sigma = elem_sigma /(elem−>volume () ∗1000) ;

// load elem_sigma data in to tract ion_system

// ge t t i n g dof i n d i c e s map f o r the cur rent v a r i a b l e
traction_dof_map . do f_ind i ce s (elem , tract ion_dof_indices_var

, T_var) ;

// We are us ing CONSTANT MONOMIAL ba s i s func t i ons , hence we
only need to get

// one dof index per va r i ab l e

82 APÊNDICE A. Códigos

l ibMesh : : dof_id_type dof_index = tract ion_dof_indices_var
[0] ;

// s e t t i n g the s o l u t i o n
i f ((tract ion_system . so lu t i on−>f i r s t_ l o ca l_ index () <=

dof_index) && (dof_index < tract ion_system . so lu t i on−>
las t_loca l_ index ()))

tract ion_system . so lu t i on−>se t (dof_index , elem_sigma) ;

}

// Should c a l l c l o s e and update when we s e t vec to r e n t r i e s
d i r e c t l y

tract ion_system . so lu t i on−>c l o s e () ;
t ract ion_system . update () ;

}

//END Cable_Equation_CLASSIC func t i on s :

/∗HERE∗/

//
Cable_Equation_mixed
func t i on s :

Cable_Equation_MIXED : : Cable_Equation_MIXED(const
Cable_Problem_Data & Data , const GetPot & Command_Line ,

const l ibMesh : :
LibMeshInit & INIT
) : Cable_Equation
(Data ,Command_Line
) ,

mesh (INIT .comm()) ,
equation_systems (
mesh) { } ;

A.4. Código do problema da análise global 83

void Cable_Equation_MIXED : : solve_cable_problem_complete () {

// Create a mesh with user−de f ined dimension .
// Read number o f e lements from command l i n e
i n t ps = 200 ;
i f (command_line . s earch (1 , "−n "))

ps = command_line . next (ps) ;

// Read FE order from command l i n e
std : : s t r i n g order = "SECOND" ;
i f (command_line . s earch (2 , "−Order " , "−o "))

order = command_line . next (order) ;

// Read FE order from command l i n e
std : : s t r i n g order_t = "CONSTANT" ;
i f (command_line . s earch (2 , "−Ordert " , "−ot "))

order_t = command_line . next (order_t) ;

// Read number non l i n e a r l oops
i n t n l_steps = 200 ;
i f (command_line . s earch (1 , "−n l l "))

n l_steps = command_line . next (n l_steps) ;

// Read number l i n e a r s t ep s
i n t l_steps = 500 ;
i f (command_line . s earch (1 , "−nl "))

l_steps = command_line . next (l_steps) ;

l ibMesh : : Real to l_nl = Cable_Equation : : data .L() ;
i f (command_line . s earch (1 , "−t o l "))

to l_nl = command_line . next (to l_nl) ;

// Generate 1D mesh in the i n t e r v a l [0 ,L] with number o f
e lements ps and order " order " .

l ibMesh : : MeshTools : : Generation : : bu i l d_ l ine (mesh ,
ps ,

84 APÊNDICE A. Códigos

0 . , Cable_Equation
: : data .L() ,

(order == "FIRST")
? l ibMesh : :

EDGE2 : l ibMesh
: :EDGE3) ;

// Pr in t ing mesh i n f o to the s c r e en
std : : cout<<" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗−MESH␣INFORMATION
−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ "<<std : : endl<<std : : endl
;

mesh . p r in t_ in fo () ;
s td : : cout<<" ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗−MESH␣INFORMATION␣

END−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ "<<std : : endl<<std : : endl ;

// Refresh mesh in to equation_system
equation_systems . r e i n i t () ;

// Dec lare the system and i t s v a r i a b l e s (and r e l a t i v e o rde r s)
l ibMesh : : L inear Impl i c i tSys tem & system = equation_systems .

add_system<libMesh : : L inear Impl ic i tSystem> (" Catenary ") ;

unsigned i n t x_var = system . add_variable (" x " , l ibMesh : :
U t i l i t y : : string_to_enum<libMesh : : Order> (order)) ;

unsigned i n t y_var = system . add_variable (" y " , l ibMesh : :
U t i l i t y : : string_to_enum<libMesh : : Order> (order)) ;

unsigned i n t t_var ;

i f (order_t == "FIRST")
t_var = system . add_variable (" t " , l ibMesh : : U t i l i t y : :

string_to_enum<libMesh : : Order> (order_t)) ;

e l s e
t_var = system . add_variable (" t " , l ibMesh : :CONSTANT, libMesh

: :MONOMIAL) ;

// Give the system a po in t e r to the assembly func t i on
system . attach_assemble_function (assemble_cable_linear_MIXED) ;

A.4. Código do problema da análise global 85

// Construct two D i r i c h l e t boundary cond i t i ons , one omogeneus
and the other nonomogeneus ob j e c t

// Ind i c a t e which boundary IDs we impose the BC on
std : : set<libMesh : : boundary_id_type> boundary_ids_omogeneus ;

// the dim==1 mesh has two boundar ies with IDs 0 and 1
boundary_ids_omogeneus . i n s e r t (0) ;

// Create a vec to r s t o r i n g the va r i a b l e numbers which the BC
app l i e s to

std : : vector<unsigned int> variables_omogeneus (2) ;
variables_omogeneus [0] = x_var ;
variables_omogeneus [1] = y_var ;

// Create a ZeroFunction to i n i t i a l i z e d i r i c h l e t_bc
libMesh : : ZeroFunction<> z f ;

// Create a Dir ich letBoundary ob j e c t with pos i t i on , v a r i a b l e s
and va lues

l ibMesh : : Dir ich letBoundary dir ichlet_bc_omogeneus (
boundary_ids_omogeneus , variables_omogeneus , &z f) ;

// We must add the D i r i c h l e t boundary cond i t i on _before_
// we c a l l equation_systems . i n i t ()
system . get_dof_map () . add_dirichlet_boundary (

dir ichlet_bc_omogeneus) ;

// Construct a D i r i c h l e t boundary cond i t i on ob j e c t

// Ind i c a t e which boundary IDs we impose the BC on
std : : set<libMesh : : boundary_id_type> boundary_ids ;

boundary_ids . i n s e r t (1) ;

// Create a vec to r s t o r i n g the va r i a b l e numbers which the BC
app l i e s to

86 APÊNDICE A. Códigos

std : : vector<unsigned int> va r i a b l e s (1) ;
v a r i a b l e s [0] = y_var ;

// Create an Analyt icFunct ion ob j e c t that we use to p r o j e c t
the BC

// This func t i on j u s t c a l l s the func t i on exact_so lut ion v ia
exact_solution_wrapper

l ibMesh : : Analyt icFunct ion<> exact_so lut ion_object (
exact_solution_wrapper) ;

l ibMesh : : Dir ich letBoundary d i r i c h l e t_bc (boundary_ids ,
va r i ab l e s , &exact_so lut ion_object) ;

// We must add the D i r i c h l e t boundary cond i t i on _before_
// we c a l l equation_systems . i n i t ()
system . get_dof_map () . add_dirichlet_boundary (d i r i c h l e t_bc) ;

// I n i t i a l i z e data s t r u c t u r e s f o r equation_system ob j e c t and
pr in t i t s in fo rmat ion

equation_systems . i n i t () ;

equation_systems . p r in t_ in fo () ;

//Create a performance−l o gg ing
libMesh : : PerfLog per f_log (" Systems␣Catenary ") ;

//Get a r e f e r e n c e to the Catenary system
libMesh : : L inear Impl i c i tSys tem& catenary_stat ic_system =

equation_systems . get_system<libMesh : : L inear Impl i c i tSystem >(
" Catenary ") ;

// Number o f s t ep s and t o l e r an c e c r i t e r i o n f o r the non l in ea r
i t e r a t i o n s

const unsigned i n t n_nonl inear_steps = nl_steps ;
const l ibMesh : : Real non l inea r_to l e rance = to l_nl ;

// I t i s convenient a l s o to d e f i n e a max l i n e a r s o l v e r
i t e r a t i o n s f o r the l i n e a r system when the convergence i s

A.4. Código do problema da análise global 87

not c e r t a i n
equation_systems . parameters . set<unsigned int >(" l i n e a r ␣ s o l v e r ␣

maximum␣ i t e r a t i o n s ") = l_steps ;

// Pro j e c t an i n i t i a l s o l u t i o n with an Analyt icFunct ion ob j e c t :

// This func t i on j u s t c a l l s the func t i on i n i t i a l _ s o l u t i o n v ia
in i t i a l_so lu t i on_wrappe r

l ibMesh : : Analyt icFunct ion<> in i t i a l_ s o l u t i o n_ob j e c t (∗
Cable_Equation : : data . i n i t i a l _ s o l u t i o n) ;

// An i n i t i a l exact s o l u t i o n i s p ro j e c t ed in the aproximated
f un c t i o n a l space

system . p ro j e c t_so lu t i on (& i n i t i a l_ s o l u t i o n_ob j e c t) ;

// P lo t t i ng the i n i t i a l " s o l u t i o n "
l ibMesh : : GnuPlotIO p lo t1 (mesh , " I n i t i a l ␣ p o s i t i o n " , l ibMesh : :

GnuPlotIO : :GRID_ON) ;
p lo t1 . write_equation_systems (" gnuplot_script_initial_MIXED " ,

equation_systems) ;

// Get a copy o f the non l i nea r cur r ent i t e r a t i o n s o l u t i o n (to
t e s t whether to e x i t or not the loop)

l ibMesh : : AutoPtr<libMesh : : NumericVector<libMesh : : Number> >
las t_non l inear_so ln (catenary_stat ic_system . so lu t i on−>clone
()) ;

// Se t t i ng l i n e a r s o l v e t o l e r an c e
const l ibMesh : : Real i n i t i a l_ l i n e a r_ s o l v e r_ t o l = 1 . e−10;
equation_systems . parameters . set<libMesh : : Real> (" l i n e a r ␣ s o l v e r

␣ t o l e r an c e ") = i n i t i a l_ l i n e a r_ s o l v e r_ t o l ;

// Beginning non l i n ea r loop
f o r (unsigned i n t l =0; l<n_nonl inear_steps ; ++l) {

// Update l a s t non l i n ea r s o l u t i o n
las t_nonl inear_so ln−>zero () ;
la s t_nonl inear_so ln−>add (∗ catenary_stat ic_system . s o l u t i o n) ;

88 APÊNDICE A. Códigos

// Assemble and so l v e l i n e a r system
per f_log . push (" l i n e a r ␣ s o l v e ") ;
equation_systems . get_system (" Catenary ") . s o l v e () ;
per f_log . pop (" l i n e a r ␣ s o l v e ") ;

// Compute the d i f f e r e n c e between cur rent and l a s t non l in ea r
i t e r a t i o n s

las t_nonl inear_so ln−>add (−1. , ∗ catenary_stat ic_system .
s o l u t i o n) ;

la s t_nonl inear_so ln−>c l o s e () ;

// Compute the L2 norm and the H1 o f the s o l u t i o n d i f f e r e n c e
:

const l ibMesh : : Real norm_delta_x = system . calculate_norm (∗
l a s t_nonl inear_so ln , 0 , l ibMesh : : L2) ;

const l ibMesh : : Real norm_delta_y = system . calculate_norm (∗
l a s t_nonl inear_so ln , 1 , l ibMesh : : L2) ;

const l ibMesh : : Real norm_delta_t = system . calculate_norm (∗
l a s t_nonl inear_so ln , 2 , l ibMesh : : L2) ;

const l ibMesh : : Real norm_delta = sq r t (norm_delta_x∗
norm_delta_x + norm_delta_y∗norm_delta_y) ;

const l ibMesh : : Real norm_delta_all = system . calculate_norm (∗
l a s t_nonl inear_so ln , l ibMesh : : L2) ;

// Get the number o f i t e r a t i o n s r equ i r ed to s o l v e the l i n e a r
system and i t s f i n a l r e s i d u a l

const unsigned i n t n_ l i n ea r_ i t e r a t i on s =
catenary_stat ic_system . n_ l i n ea r_ i t e r a t i on s () ;

const l ibMesh : : Real f i n a l_ l i n e a r_ r e s i d u a l =
catenary_stat ic_system . f i n a l_ l i n e a r_ r e s i d u a l () ;

// Pr int out the convergence i n f o f o r both l i n e a r and
non l i n ea r i t e r a t i o n s

A.4. Código do problema da análise global 89

std : : cout << "−−−−−−−−−−−Newton : ␣ "<<l<<"−th␣ step ␣
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−␣ "<<std : : endl ;

s td : : cout << " Linear ␣ s o l v e r ␣ converged ␣ at ␣ s tep : ␣ " <<
n_l in ea r_ i t e r a t i on s <<std : : endl

<< " , ␣ f i n a l ␣ r e s i d u a l : ␣ "<< f i n a l_ l i n e a r_ r e s i d u a l <<std : : endl
<< " ␣␣Nonl inear ␣ convergence : ␣ | | u␣−␣u_old | | _L2␣=␣ " <<

norm_delta_all <<std : : endl
<< " ␣␣Nonl inear ␣ convergence : ␣ | | xy␣−␣xy_old | | _L2␣=␣ " <<

norm_delta <<std : : endl
<< " ␣␣Nonl inear ␣ convergence : ␣ | | t ␣−␣ t_old | | _L2␣=␣ " <<

norm_delta_t <<std : : endl ;
s td : : cout << "
−−−
␣ "<<std : : endl ;

// Terminate s o l u t i o n i t e r a t i o n i f the d i f f e r e n c e between
l a s t and cur rent non l i n ea r s o l u t i o n s i s s u f f i c i e n t l y
smal l and i f the most r e c en t l i n e a r system was so lved to
a s u f f i c i e n t t o l e r an c e

i f ((norm_delta < non l inea r_to l e rance) && (
catenary_stat ic_system . f i n a l_ l i n e a r_ r e s i d u a l () <
non l inea r_to l e rance)) {

std : : cout << " ␣Nonl inear ␣ s o l v e r ␣ converged ␣ at ␣ s tep ␣ "
<< l
<< std : : endl ;
break ;

}

// Decrease the l i n e a r system to l e r an c e . To obta in the
quadrat i c convergence with Newton method the l i n e a r
system to l e r an c e needs to dec r ea s e as we get c l o s e r to
the s o l u t i o n .

// equation_systems . parameters . set<libMesh : : Real> (" l i n e a r
s o l v e r t o l e r an c e ") =

// std : : min (U t i l i t y : : pow<2>(f i n a l_ l i n e a r_ r e s i d u a l) ,
i n i t i a l_ l i n e a r_ s o l v e r_ t o l) ;

90 APÊNDICE A. Códigos

} // end non l i n ea r loop

libMesh : : GnuPlotIO p lo t (mesh , " S ta t i onary ␣ po s i t i o n ␣mexed␣
formulat ion " , l ibMesh : : GnuPlotIO : :GRID_ON) ;

p l o t . write_equation_systems (" gnuplot_script_MIXED " ,
equation_systems) ;

r e turn ;

} ;

/∗Weak formulat ion
c o e f f i c i e n t s
d e f i n i t i o n f o r MIXED
method∗/

libMesh : : Real LA1(const l ibMesh : : Real xl , const l ibMesh : : Real yl
, const l ibMesh : : Real t) {

re turn (Cable_Equation : : data .EA() ∗ x l ∗ ((t ∗1000 .) /(
Cable_Equation : : data .EA()+(t ∗1000 .)))) ;

} ;

l ibMesh : : Real LA2(const l ibMesh : : Real xl , const l ibMesh : : Real yl
, const l ibMesh : : Real t) {

re turn (Cable_Equation : : data .EA() ∗ y l ∗ ((t ∗1000 .) /(
Cable_Equation : : data .EA()+(t ∗1000 .)))) ;

} ;

l ibMesh : : Real LB1(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) {

A.4. Código do problema da análise global 91

r e turn ((1 .+((t ∗1000 .) /Cable_Equation : : data .EA()))∗ fx (x , y , xl ,
y l)) ;

} ;

l ibMesh : : Real LB2(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) {

re turn ((1 .+((t ∗1000 .) /Cable_Equation : : data .EA()))∗ fy (x , y , xl ,
y l)) ;

} ;

l ibMesh : : Real LB3(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) {

re turn ((0 . 5) ∗denominator (xl , yl , 2 .) − (0 . 5) ∗(pow((1 .+((t
∗1000 .) /Cable_Equation : : data .EA())) , 2))) ;

} ;

l ibMesh : : Real A11(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) {

re turn (Cable_Equation : : data .EA() ∗ ((t ∗1000 .) /(Cable_Equation
: : data .EA()+(t ∗1000 .)))) ;

} ;

l ibMesh : : Real A12(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) {

re turn 0 ;

} ;

92 APÊNDICE A. Códigos

l ibMesh : : Real A13(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) {

re turn (x l ∗pow((Cable_Equation : : data .EA() /(Cable_Equation : :
data .EA()+(t ∗1000 .))) , 2 .)) ;

} ;

l ibMesh : : Real A21(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) {

re turn 0 ;

} ;

l ibMesh : : Real A22(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) {

re turn (Cable_Equation : : data .EA() ∗ ((t ∗1000 .) /(Cable_Equation
: : data .EA()+(t ∗1000 .)))) ;

} ;

l ibMesh : : Real A23(const l ibMesh : : Real xl , const l ibMesh : : Real yl ,
const l ibMesh : : Real t) {

re turn (y l ∗pow((Cable_Equation : : data .EA() /(Cable_Equation : :
data .EA()+(t ∗1000 .))) , 2 .)) ;

} ;

l ibMesh : : Real B11(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) {

re turn (−3.∗(1.+((t ∗1000 .) /Cable_Equation : : data .EA()))∗
Cable_Equation : : data .Cd() ∗

sgn (Cable_Equation : : data . f (y)∗ y l) ∗(pow(
Cable_Equation : : data . f (y) , 2 .))∗ x l ∗pow(yl , 3 .) /(

A.4. Código do problema da análise global 93

denominator (xl , yl , 5 . / 2 .))) ;

} ;

l ibMesh : : Real B12(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) {

re turn (3 .∗ (1+((t ∗1000 .) /Cable_Equation : : data .EA()))∗
Cable_Equation : : data .Cd() ∗

sgn (Cable_Equation : : data . f (y)∗ y l) ∗(pow(
Cable_Equation : : data . f (y) , 2 .)) ∗(pow(xl , 2 .) ∗pow(yl
, 2 .)) /(denominator (xl , yl , 5 . / 2 .))) ;

} ;

l ibMesh : : Real B13(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) { re turn 0 . ; } ;

l ibMesh : : Real B21(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) {

re turn ((1 .+((t ∗1000 .) /Cable_Equation : : data .EA()))∗
Cable_Equation : : data .Cd() ∗

sgn (Cable_Equation : : data . f (y)∗ y l) ∗(pow(
Cable_Equation : : data . f (y) , 2 .)) ∗(2∗pow(xl , 2 .) ∗pow
(yl , 2 .) − pow(yl , 4 .)) /(denominator (xl , yl , 5 . / 2))
) ;

} ;

l ibMesh : : Real B22(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) {

re turn (−(1.+((t ∗1000 .) /Cable_Equation : : data .EA()))∗
Cable_Equation : : data .Cd() ∗

94 APÊNDICE A. Códigos

sgn (Cable_Equation : : data . f (y)∗ y l) ∗(pow(
Cable_Equation : : data . f (y) , 2 .)) ∗(2∗pow(xl , 3 .) ∗ y l
− x l ∗pow(yl , 3 .)) /(denominator (xl , yl , 5 . / 2))) ;

} ;

l ibMesh : : Real B23(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) { re turn 0 . ; } ;

l ibMesh : : Real C11(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) { re turn 0 ; } ;

l ibMesh : : Real C12(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) {

re turn (2 .∗ (1+((t ∗1000 .) /Cable_Equation : : data .EA()))∗
Cable_Equation : : data .Cd() ∗

sgn (Cable_Equation : : data . f (y)∗ y l)∗Cable_Equation : :
data . f (y)∗Cable_Equation : : data . f l (y) ∗(pow(yl , 3 .))
/(denominator (xl , yl , 3 . / 2 .))) ;

} ;

l ibMesh : : Real C13(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) {

re turn (fx (x , y , xl , y l) /Cable_Equation : : data .EA()) ;

} ;

l ibMesh : : Real C21(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) { re turn 0 ; } ;

A.4. Código do problema da análise global 95

l ibMesh : : Real C22(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) {

re turn (−2.∗(1.+((t ∗1000 .) /Cable_Equation : : data .EA()))∗
Cable_Equation : : data .Cd() ∗

sgn (Cable_Equation : : data . f (y)∗ y l)∗Cable_Equation : :
data . f (y)∗Cable_Equation : : data . f l (y)∗ x l ∗(pow(yl
, 2 .)) /(denominator (xl , yl , 3 . / 2 .))) ;

} ;

l ibMesh : : Real C23(const l ibMesh : : Real x , const l ibMesh : : Real y ,
const l ibMesh : : Real xl , const l ibMesh : : Real yl , const l ibMesh
: : Real t) { re turn (fy (x , y , xl , y l) /Cable_Equation : : data .EA()
) ; } ;

void assemble_cable_linear_MIXED (libMesh : : EquationSystems& es ,
const std : : s t r i n g& system_name) {

// Confirm i f we are assembl ing the r i g h t system
libmesh_assert_equal_to (system_name , " Catenary ") ;

// Gett ing r e f e r e n c e to the mesh ob j e c t
const l ibMesh : : MeshBase& mesh = es . get_mesh () ;

// Get dimension o f the problem
const unsigned i n t dim = mesh . mesh_dimension () ;

// Get r e f e r e n c e to the catenary system and i t s v a r i a b l e s
number i d s

l ibMesh : : L inear Impl i c i tSys tem& catenary_stat ic_system = es .
get_system<libMesh : : L inear Impl i c i tSystem> (" Catenary ") ;

const unsigned i n t x_var = catenary_stat ic_system .
variable_number (" x ") ;

const unsigned i n t y_var = catenary_stat ic_system .
variable_number (" y ") ;

96 APÊNDICE A. Códigos

const unsigned i n t t_var = catenary_stat ic_system .
variable_number (" t ") ;

// get f i n i t e element type f o r " x " (same as the " y " type) −
both are d isp lacement types

l ibMesh : : FEType fe_disp_type = catenary_stat ic_system .
var iab le_type (x_var) ;

// get f i n i t e element type f o r "T"
libMesh : : FEType fe_trac_type = catenary_stat ic_system .

var iab le_type (t_var) ;

// Build a F in i t e Element ob j e c t (po in t e r) o f the s p e c i f i e d
type f o r the d isp lacement v a r i a b l e s

l ibMesh : : AutoPtr<libMesh : : FEBase> fe_disp (l ibMesh : : FEBase : :
bu i ld (dim , fe_disp_type)) ;

// Build a F in i t e Element ob j e c t (po in t e r) o f the s p e c i f i e d
type f o r the t r a c t i o n va r i a b l e

l ibMesh : : AutoPtr<libMesh : : FEBase> fe_trac (l ibMesh : : FEBase : :
bu i ld (dim , fe_trac_type)) ;

// Gauss quadrature r u l e f o r numerica l i n t e g r a t i o n apropr i a t e
f o r the disp lacement f i n i t e element type

libMesh : : QGauss q ru l e (dim , fe_disp_type .
default_quadrature_order ()) ;

// Se t t i ng the quadrature r u l e to the f i n i t e elemnt ob j e c t s (
fe_disp i s a po in t e r that w i l l r e f e r to d i f f e r e n t e lements)

fe_disp−>attach_quadrature_rule (&qru l e) ;
fe_trac−>attach_quadrature_rule (&qru l e) ;

// Def in ing r e f e r e n c e s to c e l l−s p e c i f i c data that w i l l be used
to assemble the l i n e a r system :

// Get the Jacobian ∗ (quadratre weight) f o r each quadrature
po int po int

const std : : vector<libMesh : : Real>& JxW = fe_disp−>get_JxW() ;

A.4. Código do problema da análise global 97

// Get the element f unc t i on s eva luated at the quadrature
po in t s (f i r s t i nd i c e i s the node to witch the shape
func t i on i s r e l a t e d and second i s the quadrature po int)

const std : : vector<std : : vector<libMesh : : Real> >& phi = fe_disp
−>get_phi () ;

// Get the element f unc t i on s g r ad i en t s eva luated at the
quadrature po in t s (f i r s t i nd i c e i s the node to witch the
shape func t i on i s r e l a t e d and second i s the quadrature
po int) − , each element i s a l ibMesh : : RealGradient type (
dphi [qp] [i] (j) i s the g rad i en t o f the shape func t i on
r e l a t e d to the i t h node eva luated in the qpth quadrature
po int in the j th d i r e c t i o n)

const std : : vector<std : : vector<libMesh : : RealGradient> >& dphi =
fe_disp−>get_dphi () ;

// Same f o r t r a c t i o n
const std : : vector<std : : vector<libMesh : : Real> >& ps i = fe_trac
−>get_phi () ;

// A r e f e r e n c e to the DofMap ob j e c t f o r t h i s system (t h i s
ob j e c t handles the index t r a n s l a t i o n from node and element
numbers to degree o f freedom)

const l ibMesh : : DofMap & dof_map = catenary_stat ic_system .
get_dof_map () ;

// Data s t r u c t u r e s to conta in the element mathix and r ight−
hand−s i d e vec to r (rhs) c on t r i bu t i on .

l ibMesh : : DenseMatrix<libMesh : : Number> Ke ;
l ibMesh : : DenseVector<libMesh : : Number> Fe ;

l ibMesh : : DenseSubMatrix<libMesh : : Number>
Kxx(Ke) , Kxy(Ke) , Kxt (Ke) ,
Kyx(Ke) , Kyy(Ke) , Kyt (Ke) ,
Ktx(Ke) , Kty(Ke) , Ktt (Ke) ;

l ibMesh : : DenseSubVector<libMesh : : Number>
Fx(Fe) , Fy(Fe) , Ft (Fe) ;

98 APÊNDICE A. Códigos

// This vec to r w i l l hold the element dof i n d i c e s (where in the
g l oba l system the element dof get mapped)

std : : vector<libMesh : : dof_id_type> do f_ind i ce s ;
s td : : vector<libMesh : : dof_id_type> dof_indices_x ;
std : : vector<libMesh : : dof_id_type> dof_indices_y ;
std : : vector<libMesh : : dof_id_type> dof_indices_t ;

// Get element i t e r a t o r (the a c t i v e i s used f o r mesh−
re f inement s i t u a t i o n s)

l ibMesh : : MeshBase : : const_e lement_iterator e l = mesh .
act ive_loca l_elements_begin () ;

const l ibMesh : : MeshBase : : const_e lement_iterator end_el = mesh .
act ive_local_elements_end () ;

f o r (; e l != end_el ; ++e l) {

// Store the element we are working at in a po in t e r (elem)
const l ibMesh : : Elem∗ elem = ∗ e l ;

// Get the g l oba l dof f o r the cur rent element and the s i z e
o f them (how many nodes in each element)

dof_map . do f_ ind i ce s (elem , do f_ ind i ce s) ;
dof_map . do f_ ind i ce s (elem , dof_indices_x , x_var) ;
dof_map . do f_ ind i ce s (elem , dof_indices_y , y_var) ;
dof_map . do f_ ind i ce s (elem , dof_indices_t , t_var) ;

const unsigned i n t n_dofs = do f_ind i ce s . s i z e () ;
const unsigned i n t n_x_dofs = dof_indices_x . s i z e () ;
const unsigned i n t n_y_dofs = dof_indices_y . s i z e () ;
const unsigned i n t n_t_dofs = dof_indices_t . s i z e () ;

//Compute the c e l l−s p e c i f i c data mentioned e a r l i e r
fe_disp−>r e i n i t (elem) ;
fe_trac−>r e i n i t (elem) ;

//Prevent ca s e s in witch the re e x i x t s d i f e r e n t e lements
types in mesh (t r i a n g l e s and qu ad r i l a t e r a l)

Ke . r e s i z e (n_dofs , n_dofs) ;

A.4. Código do problema da análise global 99

Fe . r e s i z e (n_dofs) ;

//The DenseSubMatrix . r e p o s t i t i o n () member takes the (
row_offset , column_offset , row_size , column_size) .

// S im i l a r l y , the DenseSubVector . r e p o s i t i o n () member takes
the (row_offset , row_size)

Kxx . r e p o s i t i o n (x_var∗n_x_dofs , x_var∗n_x_dofs , n_x_dofs ,
n_x_dofs) ;

Kxy . r e p o s i t i o n (x_var∗n_x_dofs , y_var∗n_x_dofs , n_x_dofs ,
n_y_dofs) ;

Kxt . r e p o s i t i o n (x_var∗n_x_dofs , t_var∗n_x_dofs , n_x_dofs ,
n_t_dofs) ;

Kyx . r e p o s i t i o n (y_var∗n_x_dofs , x_var∗n_x_dofs , n_y_dofs ,
n_x_dofs) ;

Kyy . r e p o s i t i o n (y_var∗n_x_dofs , y_var∗n_x_dofs , n_y_dofs ,
n_y_dofs) ;

Kyt . r e p o s i t i o n (y_var∗n_x_dofs , t_var∗n_x_dofs , n_y_dofs ,
n_t_dofs) ;

Ktx . r e p o s i t i o n (t_var∗n_x_dofs , x_var∗n_x_dofs , n_t_dofs ,
n_x_dofs) ;

Kty . r e p o s i t i o n (t_var∗n_x_dofs , y_var∗n_x_dofs , n_t_dofs ,
n_y_dofs) ;

Ktt . r e p o s i t i o n (t_var∗n_x_dofs , t_var∗n_x_dofs , n_t_dofs ,
n_t_dofs) ;

Fx . r e p o s i t i o n (x_var∗n_x_dofs , n_x_dofs) ;
Fy . r e p o s i t i o n (y_var∗n_x_dofs , n_y_dofs) ;
Ft . r e p o s i t i o n (t_var∗n_x_dofs , n_t_dofs) ;

//Build element matrix and RHS us ing numerica l i n t e g r a t i o n (
note that the prev iu s s tep s o l u t i o n i s r equ i r ed hear)

f o r (unsigned i n t qp=0; qp<qru l e . n_points () ; qp++) {

// Values to hold prev iu s s o l u t i o n and i t s g rad i en t
l ibMesh : : Number x = 0 . ;
l ibMesh : : Number y = 0 . ;

100 APÊNDICE A. Códigos

l ibMesh : : Number t = 0 . ;

l ibMesh : : Gradient grad_x ;
l ibMesh : : Gradient grad_y ;

//Compute prev iu s Newton i t e r a t e s o l u t i o n and g rad i en t s on
the cur r ent quadrature po int

f o r (unsigned i n t l =0; l<n_x_dofs ; l++) {

x += phi [l] [qp]∗ catenary_stat ic_system . cur r ent_so lu t i on
(dof_indices_x [l]) ;

y += phi [l] [qp]∗ catenary_stat ic_system . cur r ent_so lu t i on
(dof_indices_y [l]) ;

grad_x . add_scaled (dphi [l] [qp] , catenary_stat ic_system .
cur r ent_so lu t i on (dof_indices_x [l])) ;

grad_y . add_scaled (dphi [l] [qp] , catenary_stat ic_system .
cur r ent_so lu t i on (dof_indices_y [l])) ;

}

//Same f o r t r a c t i o n
f o r (unsigned i n t l =0; l<n_t_dofs ; l++)

t += ps i [l] [qp]∗ catenary_stat ic_system . cur r ent_so lu t i on
(dof_indices_t [l]) ;

// Store computed va lue s
const l ibMesh : : Real x l = grad_x (0) ;
const l ibMesh : : Real y l = grad_y (0) ;

f o r (unsigned i n t i =0; i<n_x_dofs ; i++) {

Fx(i) += JxW[qp] ∗ (LA1(xl , yl , t)∗dphi [i] [qp] (0) − LB1(x , y ,
xl , yl , t)∗phi [i] [qp] − A11(xl , yl , t)∗ x l ∗dphi [i] [qp] (0)
−

A12(xl , yl , t)∗ y l ∗dphi [i] [qp] (0) − A13(
xl , yl , t) ∗(t ∗1000 .) ∗dphi [i] [qp] (0) +
B11(x , y , xl , yl , t)∗ x l ∗phi [i] [qp] +

B12(x , y , xl , yl , t)∗ y l ∗phi [i] [qp] + C12(x
, y , xl , yl , t)∗y∗phi [i] [qp] + C13(x , y ,

A.4. Código do problema da análise global 101

xl , yl , t) ∗(t ∗1000 .) ∗phi [i] [qp]) ;

Fy(i) += JxW[qp] ∗ (LA2(xl , yl , t)∗dphi [i] [qp] (0) − LB2(x , y ,
xl , yl , t)∗phi [i] [qp] − A21(xl , yl , t)∗ x l ∗dphi [i] [qp] (0)
−

A22(xl , yl , t)∗ y l ∗dphi [i] [qp] (0) − A23(
xl , yl , t) ∗(t ∗1000 .) ∗dphi [i] [qp] (0) +
B21(x , y , xl , yl , t)∗ x l ∗phi [i] [qp] +

B22(x , y , xl , yl , t)∗ y l ∗phi [i] [qp] + C21(x
, y , xl , yl , t)∗x∗phi [i] [qp] + C22(x , y ,
xl , yl , t)∗y∗phi [i] [qp] +

C23(x , y , xl , yl , t) ∗(t ∗1000 .) ∗phi [i] [qp])
;

f o r (unsigned i n t j =0; j<n_x_dofs ; j++) {

Kxx(i , j) += JxW[qp]∗((−A11(xl , yl , t)∗dphi [j] [qp] (0) ∗
dphi [i] [qp] (0)) + (B11(x , y , xl , yl , t)∗dphi [j] [qp] (0) ∗
phi [i] [qp]) +

(C11(x , y , xl , yl , t)∗phi [j] [qp]∗ phi
[i] [qp])) ; // Newton term

Kxy(i , j) += JxW[qp]∗((−A12(xl , yl , t)∗dphi [j] [qp] (0) ∗
dphi [i] [qp] (0)) + (B12(x , y , xl , yl , t)∗dphi [j] [qp] (0) ∗
phi [i] [qp]) +

(C12(x , y , xl , yl , t)∗phi [j] [qp]∗ phi
[i] [qp])) ; // Newton term

Kyx(i , j) += JxW[qp]∗((−A21(xl , yl , t)∗dphi [j] [qp] (0) ∗
dphi [i] [qp] (0)) + (B21(x , y , xl , yl , t)∗dphi [j] [qp] (0) ∗
phi [i] [qp]) +

(C21(x , y , xl , yl , t)∗phi [j] [qp]∗ phi
[i] [qp])) ; // Newton term

Kyy(i , j) += JxW[qp]∗((−A22(xl , yl , t)∗dphi [j] [qp] (0) ∗
dphi [i] [qp] (0)) + (B22(x , y , xl , yl , t)∗dphi [j] [qp] (0) ∗
phi [i] [qp]) +

(C22(x , y , xl , yl , t)∗phi [j] [qp]∗ phi
[i] [qp])) ; // Newton term

102 APÊNDICE A. Códigos

}

f o r (unsigned i n t j =0; j<n_t_dofs ; j++) {

Kxt (i , j) += JxW[qp]∗1000∗(−A13(xl , yl , t)∗ p s i [j] [qp]∗
dphi [i] [qp] (0) + C13(x , y , xl , yl , t)∗ p s i [j] [qp]∗ phi [i
] [qp]) ;

Kyt (i , j) += JxW[qp]∗1000∗(−A23(xl , yl , t)∗ p s i [j] [qp]∗
dphi [i] [qp] (0) + C23(x , y , xl , yl , t)∗ p s i [j] [qp]∗ phi [i
] [qp]) ;

}

}

f o r (unsigned i n t i =0; i<n_t_dofs ; i++) {

Ft (i) += JxW[qp]∗1000∗(−LB3(x , y , xl , yl , t)∗ p s i [i] [qp] + x l
∗ x l ∗ p s i [i] [qp] + y l ∗ y l ∗ p s i [i] [qp] −

(1 .+((t ∗1000 .) /Cable_Equation : :
data .EA())) ∗ ((t ∗1000) /
Cable_Equation : : data .EA())∗ p s i [
i] [qp]) ;

f o r (unsigned i n t j =0; j<n_x_dofs ; j++) {

Ktx(i , j) += JxW[qp]∗1000∗ (x l ∗dphi [j] [qp] (0) ∗ p s i [i] [qp
]) ;

Kty(i , j) += JxW[qp]∗1000∗ (y l ∗dphi [j] [qp] (0) ∗ p s i [i] [qp
]) ;

}

f o r (unsigned i n t j =0; j<n_t_dofs ; j++)
Ktt (i , j) += JxW[qp]∗1000∗1000∗(−(1+((t ∗1000 .) /

Cable_Equation : : data .EA())) ∗ (1 . / Cable_Equation : :

A.4. Código do problema da análise global 103

data .EA())∗ p s i [j] [qp]∗ p s i [i] [qp]) ;

}

} // end o f the quadrature po int qp−loop

dof_map . heterogenously_constrain_element_matrix_and_vector (
Ke , Fe , do f_ ind i ce s) ;

catenary_stat ic_system . matrix−>add_matrix (Ke , do f_ ind i ce s) ;
catenary_stat ic_system . rhs−>add_vector (Fe , do f_ ind i ce s) ;

} // end o f element loop

return ;

}

//END Cable_Equation_MIXED func t i on s

A.4.3 main

//
// Cable_al l .C
//
//
// Created by rodr i go brogg i on 16/10/14.
//
//

#inc lude " Cable_Equation . h "

//This f un c t i on s are input data to the problem and are to be
changed f o r each d i f f e r e n t phy s i c a l problem :

//Example o f constant p r o f i l e s o l u t i o n

104 APÊNDICE A. Códigos

i n l i n e l ibMesh : : Real cu r r en t_p ro f i l e (const l ibMesh : : Real y) {
re turn 1 ; }

//Example o f pa rabo l i c i n i t i a l s o l u t i o n (t h i s example o f i n i t i a l
exact pa rabo l i c s o l u t i o n i s a b i t complex so i t a l s o needs

some aux i l i a r y f unc t i on s other then i t s own that are de f ined
below as we l l) :

void i n i t i a l _ s o l u t i o n (l ibMesh : : DenseVector<libMesh : : Number> &
output , const l ibMesh : : Point & p , const l ibMesh : : Real) ;

i n l i n e l ibMesh : : Real Length () { re turn 2000 . ; }

i n l i n e l ibMesh : : Real Depth () { re turn 150 0 . ; }

i n l i n e l ibMesh : : Real fnonl in_h (const l ibMesh : : Real h) { re turn (
Length () − (h /2 .) ∗ s q r t (4 . ∗ (pow((Depth () /h) , 2 .))+1) − (pow(h
, 2 .) / (4 .∗Depth ()))∗ as inh (2 .∗Depth () /h)) ; }

i n l i n e l ibMesh : : Real D_fnonlin_h (const l ibMesh : : Real h) { re turn
(− (1 ./2 .) ∗ s q r t (4 . ∗ (pow((Depth () /h) , 2 .)) +1.) + 2 .∗pow((Depth

() /h) , 2 .) ∗ (1 . / (s q r t (4 . ∗ (pow((Depth () /h) ,2)) +1.))) − (h / (2 .∗
Depth ()))∗ as inh (2 . ∗ (Depth () /h)) + (1 . / 2 .) ∗ (1 . / (4∗ (pow((Depth
() /h) ,2))+1))) ; }

i n l i n e l ibMesh : : Real fnonl in_x (const l ibMesh : : Real x , const
l ibMesh : : Real s , const l ibMesh : : Real h) { re turn (s − (x /2 .) ∗
s q r t (4 .∗pow((Depth () ∗x/(h∗h)) , 2 .) +1.) − (pow(h , 2 .) / (4 .∗Depth
()))∗ as inh (2 .∗Depth () ∗x/(h∗h))) ; }

i n l i n e l ibMesh : : Real D_fnonlin_x (const l ibMesh : : Real x , const
l ibMesh : : Real s , const l ibMesh : : Real h) { re turn (− (1 ./2 .) ∗
s q r t (4 . ∗ (pow((Depth () ∗x/(h∗h)) , 2 .)) +1.) − 2 .∗pow((Depth () ∗x/(
h∗h)) , 2 .) ∗ (1 . / (s q r t (4 . ∗ (pow((Depth () ∗x/(h∗h)) , 2 .)) +1.))) −
(1 . / 2 .) ∗ (1 . / (4 . ∗ (pow((Depth () ∗x/(h∗h)) , 2 .)) +1.))) ; }

l ibMesh : : Real find_h () ;

//end aux i l i a r y f unc t i on s f o r i n i t i a l s o l u t i o n

A.4. Código do problema da análise global 105

i n t main (i n t argc , char ∗∗ argv)
{

libMesh : : LibMeshInit i n i t (argc , argv) ;

// Create a GetPot ob j e c t to parse the command l i n e (mostly
numeric parameters)

GetPot command_line (argc , argv) ;

//Reading and i n i t i a l i s i n g Problem phys i c a l Data
std : : i f s t r e am data_input (" data_input . txt ") ;
Cable_Problem_Data data (data_input ,& cur r en t_pro f i l e ,&

i n i t i a l _ s o l u t i o n) ;
data_input . c l o s e () ;

// Pr int the phy s i c a l data
data . p r i n t () ;

boost : : scoped_ptr<Cable_Equation> cable_equat ion ;

std : : s t r i n g type = "Both " ;

l ibMesh : : Mesh mesh (i n i t . comm()) ;

//Handle case in witch j u s t one case matter
i f (command_line . s earch (1 , "−type ")) {

type = command_line . next (type) ;

i f (type == "CLASSIC") {
cable_equat ion . r e s e t (new Cable_Equation_CLASSIC(data

, command_line , i n i t)) ;
cable_equation−>print_data () ;
cable_equation−>solve_cable_problem_complete () ;

}
e l s e i f (type == "MIXED") {

cable_equat ion . r e s e t (new Cable_Equation_MIXED(data ,
command_line , i n i t)) ;

106 APÊNDICE A. Códigos

cable_equation−>print_data () ;
cable_equation−>solve_cable_problem_complete () ;

}

e l s e {
std : : ce r r<<"The␣argument␣ o f ␣−type␣ should ␣be␣ e i t h e r ␣

MIXED␣or ␣CLASSIC . ␣User␣ passed : ␣ "<<type<<std : : endl
;

e x i t (1) ;
}

}

e l s e {

cable_equat ion . r e s e t (new Cable_Equation_CLASSIC(data ,
command_line , i n i t)) ;

cable_equation−>print_data () ;
cable_equation−>solve_cable_problem_complete () ;

cable_equat ion . r e s e t (new Cable_Equation_MIXED(data ,
command_line , i n i t)) ;

cable_equation−>solve_cable_problem_complete () ;

}

re turn 0 ;
}

l ibMesh : : Real find_h () {

// F i r s t th ing i s to f i nd the x co rd ina t e o f the plata form (
named h)

libMesh : : Real h_c ;
l ibMesh : : Real h_old = Depth () ∗ 0 . 5 ;

A.4. Código do problema da análise global 107

l ibMesh : : Real e r r o r = 1 ;

unsigned i n t i = 0 ;

unsigned i n t MAXIT = 50 ;

whi l e (e r r o r > 0.001 && i < MAXIT) {

h_c = h_old − (fnonl in_h (h_old) /D_fnonlin_h (h_old)) ;

e r r o r = abs (h_c − h_old) ;

h_old = h_c ;

i++;
}

return h_c ;
}

void i n i t i a l _ s o l u t i o n (l ibMesh : : DenseVector<libMesh : : Number> &
output , const l ibMesh : : Point & p , const l ibMesh : : Real) {

const l ibMesh : : Real h = find_h () ;

l ibMesh : : Real x_c ;

l ibMesh : : Real x_old = p (0) ;

l ibMesh : : Real e r r o r = 1 ;

unsigned i n t i = 0 ;

unsigned i n t MAXIT = 50 ;

whi l e (e r r o r > 0.001 && i < MAXIT) {

108 APÊNDICE A. Códigos

x_c = x_old − (fnonl in_x (x_old , p (0) ,h) /D_fnonlin_x (x_old
, p (0) ,h)) ;

e r r o r = abs (x_c − x_old) ;

x_old = x_c ;

i++;
}

//Parabola i n i t i a l i z a t i o n
output (0) = x_c ;
output (1) = (Depth () /pow(h , 2)) ∗(pow(x_c , 2)) ;
((output . s i z e () < 3) ? output (1) = (Depth () /pow(h , 2)) ∗(pow(

x_c , 2)) : output (2) = 4 . e2 + (1 . e3 − 4 . e2)∗p (0) / (1800 .))
;

}

void in i t i a l_so lu t i on_mixed (l ibMesh : : DenseVector<libMesh : : Number
> & output , const l ibMesh : : Point & p , const l ibMesh : : Real) {

const l ibMesh : : Real h = find_h () ;

l ibMesh : : Real x_c ;

l ibMesh : : Real x_old = p (0) ;

l ibMesh : : Real e r r o r = 1 ;

unsigned i n t i = 0 ;

unsigned i n t MAXIT = 50 ;

whi l e (e r r o r > 0.001 && i < MAXIT) {

x_c = x_old − (fnonl in_x (x_old , p (0) ,h) /D_fnonlin_x (x_old
, p (0) ,h)) ;

A.4. Código do problema da análise global 109

e r r o r = abs (x_c − x_old) ;

x_old = x_c ;

i++;
}

std : : cout<<std : : endl<<" S i z e ␣ seen : ␣␣ "<<output . s i z e ()<<std : :
endl ;

//Parabola i n i t i a l i z a t i o n
output (0) = x_c ;
output (1) = (Depth () /pow(h , 2)) ∗(pow(x_c , 2)) ;
((output . s i z e () < 3) ? output (1) = (Depth () /pow(h , 2)) ∗(pow(

x_c , 2)) : output (2) = 4 . e2 + (1 . e3 − 4 . e2)∗p (0) / (1800 .))
;

}

	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Sumário
	Introdução
	Introdução
	Revisão da Literatura
	Revisão da Literatura
	Enquadramento na teoria geral das EDPs
	A formulação variacional do problema geral
	A formulação variacional como princípio do trabalho virtual
	Questões de existência e unicidade

	Aproximação numérica pelo método de Galerkin
	O método de Rayleigh-Ritz e introdução ao método dos elementos finitos
	O método de Galerkin

	O método de Newton para solução de sistemas não lineares
	O problema: análise global
	Equações de equilíbrio
	Relações Cinemáticas
	Relação Constitutiva
	Princípio da mínima energia potencial total e simplificações possíveis
	Formulação Dual

	Materiais e métodos
	Materiais e métodos
	Análise e formulação do problema
	Formulação completa do problema global
	Formulação fraca clássica
	A formulação fraca mista

	Discretização e aproximação com o método de Galerkin
	Método de Galerkin - formulação clássica
	Método de Galerkin - formulação mista

	O problema local em sua formulação axissimétrica
	Difusão térmica
	Inclusão do efeito térmico no problema axissimétrico

	Os instrumentos utilizados
	A linguagem C++ e a biblioteca libmesh
	O método de refinamento cooperativo
	Complexidade e eficiência do código para o problema axissimétrico

	Resultados
	Resultados
	Resultados do problema global
	Variação do comprimento
	Variação da magnitude de corrente
	Variação da magnitude do peso imerso
	Importância relativa das variações

	Resultados do problema axissimétrico
	Resultados do problema de difusão de temperatura
	Análise estrutural em ausência do efeito térmico
	Análise estrutural em presença do efeito térmico

	Discussão
	Discussão
	Conclusão
	Conclusão
	Anexos
	Elasticidade linear estática
	Equações do equilibrio
	Cinemática e Congruência em Pequenas Deformações
	Cinemática do meio e equações de campo
	O tensor deformação
	Linearização

	Relações constitutivas e equação de Navier
	Relações constitutivas e Lei de Hooke
	Equação de Navier

	Complementos de análise funcional
	Espaço Normado, de Banach e de Hilbert
	Funcionais e formas bilineares
	Diferenciação em espaços lineares
	Distribuições
	Espaços de Sobolev

	Referências
	Apêndices
	Códigos
	Código do problema de difusão de temperatura
	Código do problema estrutural sem efeitos térmicos
	Código do problema estrutural com efeitos térmicos
	Código do problema da análise global
	Header - Protótipo das classes e das funções
	Implementação das funções membro e auxiliares - source code
	main

