Rodrigo Broggi

Analise estrutural de tubulacoes Pipe-in-Pipe

Sao Paulo - Brasil
2014

Rodrigo Broggi

Analise estrutural de tubulacoes Pipe-in-Pipe

Monografia apresentada a Escola Politécnica
da Universidade de Sao Paulo para a obtencao
do titulo de Engenheiro Mecanico

Universidade de Sao Paulo — USP
Escola Politécnica

Departamento de Engenharia Mecanica

Orientador: Prof. Dr. Roberto Ramos Jr.

Coorientador: Prof. Dr. Luca Formaggia

Sao Paulo - Brasil

2014

Broggi, Rodrigo

Analise estrutural de tubulacdes pipe-in-pipe / R. Broggi. --
Sao Paulo, 2014.

237 p.

Trabalho de Formatura - Escola Politécnica da Universidade
de Sao Paulo. Departamento de Engenharia Mecanica.

1.Tubulacdes 2.Risers (Estudo numérico) l.Universidade de
Sao Paulo. Escola Politécnica. Departamento de Engenharia
Mecanica Il.t.

Este trabalho é dedicado a: meus avos

Agradecimentos

Agradeco antes de tudo aos professores que me estimularam em todo meu percurso
académico, em especial: ao professor Roberto Ramos pela sua seriedade, disponibilidade e
dedicac¢ao nos cursos ministrados, uma tendéncia cada vez mais rara no mundo universitario;
ao professor Sandro Salsa, pela sua capacidade de ensinar temas complicadissimos com
simplicidade e pela sua preocupacao com a real instrucao de seus alunos; a memoria do
professor Martinho que, com afeto e dedicacao, exerceu a sua profissao até o tultimo dos

seus dias.

Agradego a Escola Politécnica e seus funcionarios por todo o apoio nos anos de

formacao e pela oportunidade a mim concedida de estudar no exterior.

Finalmente agradeco a minha familia por ter estimulado e possibilitado meus

estudos.

“If people do not believe that mathematics is simple,
it is only because they do not realize how complicated life is.

(John von Neumann,)

Resumo

No presente trabalho sao estudadas, sob o aspecto da resisténcia estrutu-
ral, tubulagoes conhecidas como risers na industria do petrdleo. Especificamente
serd enfatizado um tipo de configuracdo chamado pipe-in-pipe que vem ganhando
importancia e interesse no ambito da exploracao offshore principalmente gracas
a sua eficiéncia no isolamento térmico. Sob algumas hipdteses iniciais é possivel
dividir o estudo em duas etapas onde os efeitos que derivam do peso préprio imerso
da estrutura e do carregamento imposto pela corrente maritima sao desacoplados
dos efeitos das pressoes e da distribuicdo de temperatura: na primeira etapa, os
carregamentos sao abordados de modo global usando as equagdes de catenaria e com
essa técnica é possivel determinar as tragoes resultantes em uma se¢ao transversal
genérica, desprezando a resisténcia a flexdo da tubulacdo. Nessa parte se concentram
as nao-linearidades do problema que derivam das condi¢bes de contorno, das rela-
¢Oes cinematicas e do carregamento proveniente das correntes maritimas. Dada a
nao-linearidade do modelo, é feito um estudo sobre a sensibilidade de resposta as
variagoes dos diversos parametros de cdlculo para entender a importancia relativa
de cada um no problema geral. A segunda parte é elaborada localmente de modo a
poder conservar as hipoteses de axissimetria e de pequenas deformagdes. Um estudo
comparativo é feito para avaliar a importancia relativa dos efeitos decorrentes do
gradiente de temperatura, fendmeno que é frequentemente desprezado na literatura.

A abordagem matemé&tico-numérica se baseia em modernas técnicas e mé-
todos quais formulacGes fracas ou variacionais para a resolugdo das equacoes a
derivadas parciais que derivam da mecanica dos sélidos e das relagoes cinematicas,
constitutivas e de equilibrio. Essa abordagem ¢ ideal para aplicagdo de métodos
numéricos como o método dos elementos finitos (FEM) e o método de Newton,
principais instrumentos da teoria de analise numérica usados neste estudo. Foram
desenvolvidos codigos em linguagem C++ com o auxilio da biblioteca libmesh para
elementos finitos. Essa escolha foi feita pela eficiéncia que deriva das linguagens
compiladas de relativo baixo nivel, pela versatilidade em comunicacdo com diversos
programas e extensoes e pela facilidade de paralelizacdo e refinamento de malha
(AMR - Adaptive Mesh Refinment). Além disso foram escritos alguns shell scripts e
gnuplot scripts para o gerenciamento dos executéveis e para o pds-processamento em
sistemas UNIX.

Quanto aos resultados, além da grande coeréncia com a literatura, foi possivel
atingir um 6timo rendimento do ponto de vista numérico pelo fato de concentrar
as nao-linearidades na etapa global (que é intrinsecamente 1D). Ainda no &mbito
do problema global, foi descoberto um método inédito e robusto que combina as
caracteristicas dos métodos classico e misto do método dos elementos finitos para um
melhor rendimento sob o ponto de vista da eficiéncia numérica e da confiabilidade de
convergéncia. Também foi possivel verificar que o gradiente térmico tem um papel
importante no estudo desse tipo de estrutura sendo responsavel por uma série de
modificagbes em relagdo a resposta em sua auséncia.

Palavras-chaves: Pipe in pipe. Catendria. Elementos Finitos. C4++. Meca-
nica dos sélidos. EDP néo lineares.

Abstract

The aim of this work is to study the structural behavior of pipe-in-pipe risers.
This kind of structure is important in the offshore industry due to its improved
insulation performace. Under certain hypothesis it was possible to divide the problem
into two parts by uncoupling load effects derived from current and self weight from
load effects derived from thermal diffusion and pressures: in the first part, current
and self weight loads have been tackled from a global perspective using the catenary
equations. With this technic, it was possible to reach the traction in a given section
neglecting the flexural resistance. In this part some nonlinearities of the problem
have been dealt, namely boundary conditions, kinematic relation and current load
expression. Given those nonlinearities, a study has been made to understand the
relative importance of the input parameters by performing variations on each of
them and testing their response sensibility. In the second part, the pressure and
temperature loads have been tackled in a local fashion as to preserve axisymmetry
and small-displacement hypothesis. A comparison study has been made to evaluate
the relative importance of the thermal effects since it is often neglected in literature.

The mathematical approach is based on modern technics to solve partial
differential equations e.g. use of weak formulation and some functional analysis
contents. The differential equations arise from kinematic, equilibrium and constitutive
relations and the numerical methods as the FEM or Newton’s methods for their
solution are easily implemented when the mentioned mathematical tools are used.
Codes have been written in C++ language together with libmesh library for finite
elements method. This choice has been made due to the efficiency of compiled low
level languages, to the great compatibility with third part softwares and extensions
and to facilities on parallel implementations and grid refinement procedures (like
AMR - Adaptive Mesh Refinment). Furthermore some shell and gnuplot scripts have
been written to the management and post-processing in UNIX systems.

Results were coherent with literature data and it was possible to reach good
numerical performances since nonlinearities were present just in the intrinsically
1D global analysis. Yet, a new method was developed to solve the global analysis
problem by combining both classic and mixed FEM formulations and reaching a
more robust performance for convergence and stability. Finally the thermal effects
have been proved to have an important role in the study of this kind of structures
since they were responsible for considerable changes on final stress states both in
magnitude and distribution.

Key-words: Pipe-in-pipe. FEM. C++. Catenary. Solid Mechanics. Partial Differen-
tial Equations.

Lista de ilustracoes

Figural — SCR e FPU
Figura 2 — Estrutura pipe-in-pipe

Figura 3 — Exemplo ilustrativo. oo
Figura 4 — Exemplo ilustrativo segunda discretiza¢ao.
Figura 5 — Mapa do elemento de referéncia ao elemento da malha.
Figura 6 — Cabo flexivel deformado.

Figura 7 — Cabo flexivel suspenso sob acao de correnteza estatica.

Figura 8 — Temperatura da dgua do oceano em relacao a profundidade.
Figura 9 — Popularidade linguagens de programagao - 2013

Figura 10 —Procedimento de refinamento de malha combinado.

Figura 11 —Perfil do riser para diversos comprimentos
Figura 12 —Tracao no riser para diversos comprimentos.
Figura 13 —Perfil do riser para diversas magnitudes de corrente.
Figura 14 —Tracao no riser para diversas magnitudes de corrente.
Figura 15 —Perfil do riser para diversos valores de peso imerso.
Figura 16 —Tracao no riser para diversos valores de peso imerso.
Figura 17 —Distribuicao de temperatura radial: malha de 200 elementos e aproxi-
macao de segunda ordem.
Figura 18 —Distribui¢do de temperatura 2D: malha de 150x500 elementos e aproxi-
macao de segunda ordem.
Figura 19 —Deflexao radial u, em auséncia do efeito térmico.
Figura 20 —Deflexao axial v, em auséncia do efeito térmico.
Figura 21 —Tensao radial o, em auséncia do efeito térmico.
Figura 22 —Tensao axial o, em auséncia do efeito térmico.
Figura 23 —Tensao tangencial oy em auséncia do efeito térmico.
Figura 24 —Tensao equivalente de Von Mises o,,, em auséncia do efeito térmico. . .
Figura 25 —Deflexao radial u, em presenca do efeito térmico
Figura 26 —Tensao radial o, e tangencial oy em presenca do efeito térmico.
Figura 27 —Tensao axial o, em presenga do efeito térmico.

Figura 28 —Tensao equivalente de Von Mises o, em presenca do efeito térmico.
Figura 29 —Sobreposicao dos efeitos globais.

Figura 30 —Axioma de Euler/Postulado de Cauchy

Figura 31 —Deformacao

69

76

Tabela 1

Tabela 2
Tabela 3
Tabela 4
Tabela 5
Tabela 6
Tabela 7

Lista de tabelas

Tempo de execugao para diversas malhas 70
Dados do problema global 74
Dados numéricos do problema global 74
Dados de difusao térmicao 82
Dados para o calculo estrutural 84
Dados da malha para a simulacao sem efeitos térmicos 85

Coeficiente de expansao térmica 89

Sumario

1 Introducd@o. i e e e e e e e e e e e e e 21

Introducdo e e e e e e e 21

2 Revisaoda Literatura. e e 25

Revisdao da Literatura e 25

2.1 Enquadramento na teoria geral das EDPs. 25

2.1.1 A formulagao variacional do problema geral 26

2.1.2 A formulagao variacional como principio do trabalho virtual 28

2.1.3 Questoes de existéncia e unicidade 29

2.2 Aproximacao numérica pelo método de Galerkin 30
2.2.1 O método de Rayleigh-Ritz e introdugdo ao método dos elementos

finitos 30

2.2.2 O método de Galerkino 34

2.3 O método de Newton para solucao de sistemas nao lineares 36

2.4 O problema: andlise global L 37

2.4.1 Equagdes de equilibrioo o oo 38

2.4.2 Relagoes Cinematicas 39

2.4.3 Relacao Constitutiva00 40

2.4.4 Principio da minima energia potencial total e simplificacdes possiveis 40

2.4.5 Formulacao Dual oo o 43

3 Materiaise métodos 47

Materiaise métodos L. e e e e e 47

3.1 Analise e formulagao do problema 47

3.1.1 Formulagao completa do problema global 47

3.1.1.1 Formulagao fraca classica 48

3.1.1.2 A formulagao fraca mista 51

3.1.2 Discretizagao e aproximagao com o método de Galerkin 54

3.1.2.1 Método de Galerkin - formulagao classica 55

3.1.2.2 Método de Galerkin - formulagao mista 57

3.1.3 O problema local em sua formulacao axissimétrica 59

3.1.3.1 Difusao térmica 59

3.1.3.2 Inclusao do efeito térmico no problema axissimétrico . . . 62

3.2 Os instrumentos utilizados 65

3.2.1 A linguagem C++ e a biblioteca libmesh 66
3.2.2 O método de refinamento cooperativo 67

3.2.3 Complexidade e eficiéncia do coédigo para o problema axissimétrico. 70

4 Resultados. 0 e e e e e e e e e 73
Resultados e e e e e e 73
4.1 Resultados do problema global 73
4.1.1 Variagao do comprimento 74

4.1.2 Variagao da magnitude de corrente L. 7

4.1.3 Variagdo da magnitude do peso imerso 78

4.1.4 Importancia relativa das variagées 78

4.2 Resultados do problema axissimétrico 82
4.2.1 Resultados do problema de difusao de temperatura 82

4.2.2 Analise estrutural em auséncia do efeito térmico 84

4.2.3 Analise estrutural em presenca do efeito térmico 88

5 Discuss@o i i e 93
Discussao o i i e 93
6 Conclusdo L e e e e e e e e e e e e e 97
Conclusdao o e e e e e e e e e e e 97
Anexos 99
ANEXO A Elasticidade linear estatica 101
A.1 Equagoes do equilibrio 101
A.2 Cinematica e Congruéncia em Pequenas Deformagdes 103
A.2.1 Cinematica do meio e equagdes de campo 103

A.2.2 O tensor deformagao 104

A.23 Linearizacdo 106

A.3 Relagoes constitutivas e equacao de Navier 107
A.3.1 Relagoes constitutivas e Lei de Hooke 107

A.3.2 Equagdo de Navier 108
ANEXO B Complementos de analise funcional 109
B.1 Espaco Normado, de Banach e de Hilbert 109
B.2 Funcionais e formas bilineares L 111

B.3 Diferenciacdo em espacos lineares, 114

B.4 Distribuigoes 114
B.5 Espacos de Sobolev 118
Referéncias L e e e e e e e 121
Apéndices 125
APENDICE A COdigoSs . « « « v v v ittt e e e e e e e e e et e et e 1
A.1 Cédigo do problema de difusao de temperatura 1
A.2 Cédigo do problema estrutural sem efeitos térmicos 18
A.3 Cédigo do problema estrutural com efeitos térmicos 41
A.4 Cédigo do problema da analise global 41
A.4.1 Header - Protétipo das classes e das fungées 41

A.4.2 TImplementacao das fungoes membro e auxiliares - source code . . . 56

AA3 main ... 103

21

1 Introducao

Na indtstria do petréleo, especificamente no segmento offshore, estruturas chamadas
risers sao utilizadas no transporte do fluido extraido pela arvore de natal®, no solo submerso,
até as unidades flutuantes. Essas tubulagoes sao submetidas a diversos tipos de solicitagoes
de natureza estatica e dindmica como pressoes internas e externas, esforcos impostos pelos
movimentos da plataforma, forcas decorrentes das ac¢oes de correntezas, grandes gradientes

de temperatura e fenomenos de vibragoes induzidas por vortices.

Um tipo de riser muito utilizado pela sua eficiéncia e custo-beneficio é o SCR
(steel catenary riser). Essa estrutura é assim chamada pois apesar de ser rigida a flexao
em pequenos comprimentos, quando os comprimentos sao da ordem de grandeza da
profundidade do oceano essa rigidez é praticamente desprezivel e seus efeitos sdo confinados
somente as proximidades das extremidades. Dessa maneira, a forma assumida pelo SCR,
¢ ditada principalmente pelo seu peso préprio imerso e pelas forcas hidrodindmicas as
quais é submetido. Esse tipo de estrutura é utilizado em plataformas flutuantes, ditas
FPU (floating production unit) e liga diretamente o TDP (touch down point) na base do
oceano a plataforma, sem auxilio de béias. A figura 1 esquematiza os principais elementos

mencionados.

— Flexible il
joint submersible
Platform

Steel Catenary
Riser (SCR)

Figura 1: SCR e FPU

Fonte: (PESCE; MARTINS; CHAKRABARTTI, 2005)

L A 4rvore de natal ou Cristmas tree é um conjunto de valvulas utilizadas na extracio do petrdleo do

subsolo.

22 Capitulo 1. Introducio

Muitos dos fendmenos relacionados ao problema sao de carater nao linear sendo
grande parte relacionada a efeitos dindmicos. Além disso, o problema possui diversas
escalas de tempo, comprometendo a eficiéncia e confiabilidade de métodos numéricos
nesse contexto. Cabe observar que, no entanto, nao sao somente os efeitos dinamicos a
apresentar nao linearidades: as condigoes de contorno do problema sao do tipo contato,
os deslocamentos globais possuem grandes magnitudes e os carregamentos que derivam
das forcas de correnteza sdo dependentes da forma da estrutura. Todos esses fatores sao

intrinsecamente nao lineares e dificultam a andlise ja em ambito estatico.

Outro fenémeno interessante é como o fluxo interno influencia o efeito do peso

proprio além de contribuir a rigidez a flexao efetiva dos cabos.

No ambito desse tipo de estrutura, um tipo de riser que tem ganhado espaco nas
aplicagoes sao as chamadas tubulagoes pipe-in-pipe que consistem na sobreposicao radial

de multiplas tubulagoes concéntricas, como ilustra a figura 2.

o

Figura 2: Estrutura pipe-in-pipe

Fonte: Bredero. .. (2014, http://www.brederoshaw.com/solutions/images/illustration_ pip.jpg)

As principais partes sao o tubo interno portante, o material isolante e o tubo externo
protetor. O material isolante possui caracteristicas de resisténcia mecanica inferiores aos
outros e é protegido das agoes de pressdes hidrostaticas externas e danos mecanicos pelas
outras duas camadas. Outra grande vantagem esta no fato que, sendo o tubo protetor
mantido a baixas temperaturas, podem ser utilizados processos convencionais e nao muito

onerosos para a protecao contra a corrosao, como protecao catddica e revestimentos.

Existem dois principais tipos de tubulacoes pipe-in-pipe ditas compliant e non-
compliant: no primeiro tipo sao presentes conexoes entre os tubos interno e externo em
intervalos freqiientes de comprimento e nesse caso a transferéncia de carregamentos é bem
distribuida implicando uma expansao uniforme entre as tubulacoes. Para o segundo caso

as conexoes sao feitas somente nas extremidades da tubulacio ou espacadas com distancias

23

da ordem de grandeza de quilometros. Em ambos os casos sao empregados centralizadores
para manter a concentricidade entre os tubos e prevenir contatos, esses sao colocados na
tubulacao com espacos de 1-3 metros. Para uma classificagdo mais detalhada dos tipos de
tubulagdes pipe-in-pipe e dos tipos de isolantes geralmente utilizados veja (HAUSNER;
DIXON, 2002).

A principal razao para o emprego de tubulagoes pipe-in-pipe é o isolamento térmico
pois, com a necessidade de instalagoes offshore cada vez mais profundas, a perda de calor do
fluido tem um papel relevante pois essa é acompanhada de um aumento na sua viscosidade
que acarreta a necessidade de maiores pressoes para garantir seu escoamento. Esse quadro
se traduz na necessidade de estruturas mais robustas. Portanto um isolamento térmico
adequado pode levar a um menor custo dos risers pela necessidade de menor quantidade
de materiais devido a necessidade de menor resisténcia, bem como maiores profundidades

de exploragao.

Claramente, dada a esbeltez da estrutura, grande peso proprio e grandes pressoes
hidrostaticas, outro importante critério de falha a ser levado em consideracao é a lambagem.

No presente trabalho esse critério nao sera tratado ja que extensamente presente na
literatura, por exemplo veja (KYRIAKIDES, 2002) e (KYRIAKIDES; VOGLER, 2002).

Neste projeto, pretende-se entender a relagdo complexa entre os fendémenos solici-
tantes descritos, delimitar a importancia relativa de cada um para o estado de tensoes
resultante e desenvolver um método robusto que aborde o problema da forma mais com-
pleta possivel. Os fendomenos considerados sao os carregamentos de correnteza, de peso
préprio imerso, de pressoes interna e externa e de gradientes de temperatura, todos sob
uma Otica estatica. A abordagem dinamica foi preterida pela maior preocupagao do projeto
em tratar de maneira concisa e direta os efeitos em termos de tensoes equivalentes finais.

Essas derivam principalmente dos efeitos estaticos mencionados.

25

2 Revisao da Literatura

Neste capitulo pretende-se fazer uma coleta de ferramentas e conceitos para fa-
miliarizar o leitor com o contexto no qual o trabalho sera desenvolvido. Nos anexos sao
presentes alguns instrumentos que serao utilizados no texto e que também podem auxiliar

uma leitura mais linear.

O problema estrutural, sob hipdtese de pequenas deformagoes e deslocamentos,
se resume matematicamente & solugdo da equagdo de Navier (A.34) acompanhada de
condicoes de contorno. Para a solucao dessa equacao vetorial serao usados métodos da
teoria geral de equacoes lineares a derivadas parciais que, além de permitir uma grande
abrangéncia quanto as aplicagoes, é também ideal para a discretizacdo e aproximacgao
numeérica, sendo essa ultima uma etapa fundamental dada a complexidade das equagoes e
auséncia de solugoes analiticas. Nesse sentido se fardo necessarios alguns instrumentos de

analise funcional que sdo descritos brevemente no anexo B.

2.1 Enquadramento na teoria geral das EDPs

A equagdao de Navier (A.34) associada as suas condigoes de contorno é uma equacao
linear a derivadas parciais de segunda ordem eliptica. Essa classe de equacoes ¢ muito
abrangente! e seu estudo ¢ feito através da chamada formulagdao fraca ou variacional a

qual se baseia em uma série de resultados da anélise funcional.

A ideia por tras desse tipo de formulagao é a de enquadrar uma classe de fungoes
que seja coerente com o problema em questao e identificar univocamente, dentro dessa
classe, a funcao que corresponde a solu¢ao do problema. O problema é identificar a classe
que dé a coeréncia ao problema e que forneca contemporaneamente a existéncia de uma

unica solucgao.

No caso em questao, a incégnita é o campo de deslocamento @. Pode-se intuir que
a classe de fungoes que se procura deve ser tal que suas fungoes satisfacam as condicoes de
contorno do problema e que sejam, por exemplo, continuas ja que uma descontinuidade no
campo de deslocamentos seria equivalente a uma fratura do material. Ao mesmo tempo,
os espacos funcionais utilizados devem também possuir determinadas caracteristicas para

poder fruir de propriedades desejaveis que serao destacadas no decorrer do texto.

O estudo do problema estrutural ¢ inclusive muito instrutivo para o entendimento

da formulacao fraca pois, como sera visto, essa corresponde ao principio do trabalho virtual

1 Equacdes estaciondrias como a de difusdo e conveccio de temperatura ou difusdo de poluentes também

pertencem a essa classe.

26 Capitulo 2. Revisdo da Literatura

que por sua vez corresponde ao principio da minima energia potencial. Em outras palavras,
o campo de deslocamentos procurado é aquele que minimiza a energia potencial total do

sistema (note que essa inclui o trabalho realizado pelos carregamentos externos).

Na presente secao sera desenvolvida a formulacao fraca de modo usual sem atribuir
no entanto significado fisico ao procedimento que é puramente matematico. No fim da secao
sera feita a demonstragao da equivaléncia com o principio da minima energia potencial
total. Lembre-se que esta etapa se refere ao problema geral (ndo necessariamente o tratado
no projeto) para situagoes onde sdo validas as hipiteses de elasticidade-linear, pequenos
deslocamentos e deformacoes e isotropia. Sucessivamente sera necessaria a introducao
de novos desenvolvimentos pois a etapa global do problema nao pode ser avaliada em

pequenos deslocamentos.

2.1.1 A formulac3o variacional do problema geral

Considere um corpo de dominio genérico 2 submetido & a¢ao de um campo de
forca de volume b:Q — R edeum campo de forca de superficie s : I'y — R? com a
fronteira do dominio 992 = I'y UI'p tal que 'y NI'p = 0. Considere ainda, sem perda de
generalidade? que em I'p vale @ = 0 e dessa maneira o dominio ¢ dividido em uma por¢io

em que ¢é engastado (I'p) e outra onde sd@o impostos esforgos.

A formulagao fraca leva o problema que é funcional vetorial para um ambiente escalar
através do uso de um operador linear®, que no presente caso corresponde & multiplicaciao por
uma fungao teste v (que pertence ao espago funcional coerente mencionado anteriormente
e que definiremos mais tarde) e integragdo no dominio. Em outras palavras partindo da

equacao (A.6) se obtém:

Jo div(T(2)).3(Z) + b(Z).5(Z)dV(Z) = 0 VT € coerente
— 3(7) Vi ey (2.1)
#(z) =0 vieTp

Na sequéncia, usa-se a formula de integracao por partes, também conhecida como
formula de Green, que é um dos pilares da formulacao fraca pois descarrega a derivada a
funcgao teste:

/ div(T (7). 3@V (T) = — / T(7) : VE@)AV (@) + [T(@)A6@)dAEF) (22)
Q Q 1)

Note que T : C = 37, ; T;;Cy;, que a fungao teste deve satisfazer a terceira equacgao

de (2.1) e que o segundo termo a direita de (2.2) tem uma parte coincidente com a segunda

2 E possivel introduzir um campo, dito de relevo, R que assume exatamente os valores de @ em I'p e

resolver o problema para uma funcdo u* = & — R conduzindo o problema a formulagido anterior com
um termo adicional & direita.
Ver anexo B.

2.1. Enquadramento na teoria geral das EDPs 27

equagao de (2.1), obtém-se:

/Q T(Z) : VE(@)dV (7) = /Q b(2).F@)AV(T) + [5(@).F(F)AAE) VT € coerente

'y

Substituindo a lei de Hooke (A.27) e notando que:

e T:Vi=T:E®)"

o Tr(E(@): Vi = Tr(E(@)Tr(E(7))

Obtém-se:

a(u,v) = F(v) YU € coerente
Com:

a(it, 7) = /Q 20E(@) : E(7) + \Tr(E(@))Tr(E(®@))] dV (%) (2.3a)

F(7) = /Q bodV(#) + | S5dA() (2.3b)

Cabe neste ponto introduzir uma discussao breve do espago de fungoes coerentes
nomeado anteriormente: a formulacao variacional corresponde a um aumento da classe
de fungoes ditas classicas que seriam aquelas que sao derivaveis ao menos duas vezes em
sentido classico (visto que o problema é de segunda ordem) e que satisfazem as condigoes
de contorno pontualmente. Esse aumento corresponde ao espaco funcional H*(;R?) ou a
subespacos desse que sao espacos de Sobolev®. Para o entendimento da estrutura desse tipo
de espaco ¢é necessario um conhecimento consistente de instrumentos da analise funcional e
alguns instrumentos de anélise real, veja, por exemplo, (RUDIN, 1991) e (KOLMOGOROV;
FOMIN, 1970).

Daqui em diante os instrumentos intrinsecos relacionados aos espacos de Banach,
Hilbert e Sobolev serao considerados familiares ao leitor pois o tratamento desses temas
foge ao escopo do presente texto. Uma descri¢cao dos elementos essenciais é encontrada no
anexo B. Para o leitor interessado ver (SALSA, 2010).

Enfim pode-se concluir que a formulacao variacional do problema estrutural genérico

(na auséncia de dilatagbes térmicas) é:

Encontrar o fungio @ € Hy (Q;R?) tal que

a(i,0) = F(¥) Vo€ H (R (2.4)

4 Vu=E(®)+ %{V’D’— foT} e o segundo termo a direita é anti-simétrico e portanto se anula quando

é calculado um produto escalar com um tensor simétrico.

5 Ver anexo B.

28 Capitulo 2. Revisdo da Literatura

Tendo posto Hp (4 R?) = {d € H' (4 R?) tq. ©«=0 em Tp}.

Para o leitor que nao tem familiaridade com a analise funcional, o entendimento
dessa etapa pode ser comprometido e esse tipo de descri¢ao pode parecer supérfluo, no
entanto esse tipo de formulacao facilita muito a etapa de aproximagao numérica, pois

conduz a resolugdo de um sistema linear, como veremos adiante.

2.1.2 A formulacdo variacional como principio do trabalho virtual

Como dito anteriormente a formulacao variacional ou fraca corresponde ao principio

ou teorema do trabalho virtual que vem enunciado a seguir:

Teorema 2.1. (Trabalho Virtual) Dado um campo qualquer de deslocamento U congru-
ente e cinematicamente admissivel, ou seja, que obedece as mesmas condicoes de contorno
na parcela de fronteira I'p que as do problema relacionado, entao o trabalho interno W;
feito pelas tensoes internas estaticamente admissiveis (que sejam conforme a A.6) sob
tal campo de deslocamento, iguala o trabalho externo W, feito pelos campos de forca de

volume e de superficie, respectivamente b e §. Ou seja:

/ Z aije;)dV (T / Z (bvy)dV (& / Z s;v;)dA(Z) VU € congruente (2.5)
r

i,7=1 N =1

Com €;; = {ggl + 8v]} quando € valida a hipotese de pequenos deslocamentos.

A equivaléncia da formulagao fraca com o PTV é quase imediata, basta notar que
a formulagao fraca é o PTV com a substituicao da lei de Hooke (A.27) e que o espago das
fungoes congruentes é exatamente Hy (€;R?). O PTV é um importante instrumento nao
s6 no ambito da formulacao fraca de um problema mas também no estudo de problemas
hiperestaticos pois permite o calculo de reacoes e deslocamentos incégnitos através da

imposicao de deslocamentos virtuais em pontos oportunamente colocados.

Pode-se ainda demonstrar a equivaléncia da formulacao fraca com o principio da
minima energia potencial total (EPT). Seja portanto o caso especial onde sao validas as
hipéteses de elasticidade-linear, pequenas deformagoes e isotropia (ver se¢ao A.3.1) a EPT

total é dada pela expressao:
EPT(5) = ;/me(W+qu(()ﬂdV@yiéamvaa—AQmmm@ (2.6)

Ou seja:
EPHW:;MQW—FW) (2.7)

E sendo af(.,.) uma forma bilinear, continua e simétrica (a(@,) = a(¥, 1)) e F\(.)

um operador linear vale o seguinte:

2.1. Enquadramento na teoria geral das EDPs 29

Teorema 2.2. (Energia Potencial Minima) A formulagio fraca ou variacional (2.4)
¢ equivalente a:
EPT(@) = min EPT(7) (2.8)

veHL (QR3)

Demonstragio: Ve € R e Vi € Hi (Q;R?) tem-se:

1
EPT(u+ ev) — EPT(u) = §{a(ﬁ+ €U, U + €v) — a(u,v)} — F(u + €v) + F (1)

Entao se u é solucao de (2.4), tem-se que a(,) — F(¢) = 0, portanto:

1
EPT(ii+ e0) = EPT(il) = 5¢a(3.7) 2 0

Assim @ minimiza a EPT (EPT(d) < EPT(ud+ ev)). Por outro lado, se ¢ minimiza
a EPT, tem-se que EPT(u) < EPT(u + €v), e portanto:

e{alid, 7) — F(i)} + ;ga(a 5 >0

Mas essa inequacao forca o anulamento do termo que multiplica € porque sendo €
genérico pode-se tomar o limite para € tendendo a zero a esquerda (lim._,o-) ou o limite
de € tendendo a zero pela direita (lim._,o+) € em ambos os casos a magnitude do primeiro
termo domina a do segundo termo e como deve ser maior ou igual a zero para ambos os

limites de e entdo se conclui a afirmagao, i.é. a (2.4).

2.1.3 Questdes de existéncia e unicidade

Antes de qualquer procedimento de célculo e de resolugao de equagoes a derivadas
parciais, deve-se meditar sobre a existéncia e unicidade de uma solucao pois nem sempre
equagoes a derivadas parciais possuem soluc¢oes e nem sempre essas sao unicas. Nesse
caso um procedimento de solugao numérica pode dar resultados nao coerentes; por isso,
teoremas de unicidade e existéncia nao sao uma simples formalidade matematica, mas
uma pré-avaliacao da consisténcia de um modelo matematico que é essencial para etapas
numéricas. Por mais que um modelo matematico seja coerente e fiel a realidade, a existéncia
de uma solucao experimental nao comporta a existéncia de uma solug¢ao para o modelo

matematico. Por isso cabe ao engenheiro investigar a resolubilidade das equagoes.

Para as equacoes a derivadas parciais lineares os teoremas principais que regulam
a existéncia e unicidade de uma solugdo sao: teorema de Riez, teorema de Lazx-Milgran
e alternativa de Fredholm. Para problemas nao lineares, sao necessarios teoremas mais

sofisticados como teorema do ponto fixo e os teoremas de Shauder.

30 Capitulo 2. Revisdo da Literatura

No caso em questao serd suficiente o uso do teorema de Riez (quando I'p # ()
pois, como se virda a compreender, a forma bilinear a(.,.) é continua, coerciva e simétrica
e portanto induz um produto interno ou escalar no espago funcional Hf (%;R?). Para
o caso I'p = () a situagao é mais complicada pois a solugao nao é tnica (se iy é solugao
entdo qualquer sobreposigdo de movimento rigido do corpo iy + ¥ também é solugao) e
nesse caso deve-se selecionar a solucao mais adequada. Um exemplo relevante dessa etapa
é como a simplificacdo do modelo a um problema plano 2D, por exemplo axissimétrico,
pode levar a auséncia de engastamentos e a fronteira do dominio, nesse caso, é descrita
inteiramente por condigoes ditas de Neumann, i.é. (I'y = 092). Na realidade, qualquer
uma das solugoes possiveis é suficiente para a analise estrutural pois os critérios de falha,
geralmente, nao consideram o campo de deslocamentos mas sim o estado tensorial e esse
ultimo é unicamente determinado pois movimentos rigidos ¥ possuem tensor deformacgao
E nulo e portanto para todas as solugoes do tipo iy + U os estados de deformagao e

consequentemente de tensao, sao 0os mesmos.

Os problemas estruturais sao um 6timo ambiente para estudar unicidade e existéncia
pois os teoremas abstratos mencionados frequentemente levam a conclusées de grande
interesse fisico e muitas vezes intuitivos: por exemplo, usando a alternativa de Fredholm
para um problema com I'p = (3, conclui-se que um problema estatico é soltivel somente se

as forcas externas sao auto-equilibradas.

2.2 Aproximacao numérica pelo método de Galerkin

Antes de prosseguir para o método propriamente dito cabe uma discussao sobre
métodos de aproximagao numérica. Uma maneira de se desenvolver uma intuigdo sobre o
método dos elementos finitos (FEM) é entender antes a ideia do método de Rayleigh-Ritz
(RR). Uma descrigao didatica e breve do tema pode ser encontrada em (CORIGLIANO;
TALIERCIO, 2005). Para uma descrigdo mais completa e consagrada veja (BATH, 1996).

2.2.1 O método de Rayleigh-Ritz e introducao ao método dos elementos
finitos

A idéia do método RR é tomar a equagio da energia potencial total do problema e
introduzir um modelo simplificado de deslocamentos que seja coerente com as condigoes
ditas essenciais (I'p). Em seguida o modelo de deslocamentos é substituido na equacao da
energia potencial (2.6) e é imposta a estacionariedade igualando as derivadas em relagao a
cada um dos coeficientes a zero. Esse procedimento conduz a um sistema linear de ordem

n onde n é o nimero de parametros incognitos.

Exemplo ilustrativo Seja um problema plano onde o dominio (2) coincide com
um quadrado de vértices em (1 :(0,0), 2:(1,0), 3:(1,1), 4:(0,1)), o lado esquerdo

2.2. Aproximagdo numérica pelo método de Galerkin 31

é engastado e sobre o lado superior age um carregamento uniformemente distribuido
p, direcao vertical e sentido contrario ao do eixo y (veja a figura 3). Introduz-se, como
modelo cinemético, um polindmio de segundo grau, que em 2D seria do tipo: T, (x,y) =
c1+ 6T + 3y + ey + csx? + cey? e Uy (x,y) = o7 + T + Coy + crory + cna? + ciay?,
ou seja, é feita uma discretizagdo com 12 graus de liberdade. Esses graus de liberdade
serao reduzidos pelo fato de que o modelo deve satisfazer as condi¢oes de contorno
em Tp: u,(0,y) = &1 + 3y + oy = 0 e 4, (0,y) = 7 + coy + c12y®> = 0 Vy. Logo

612632062672692012:0.

gel

\\\\\\\\E

,_.\
(N

Figura 3: Exemplo ilustrativo.

Portanto o modelo congruente final a ser substituido na equagao da energia potencial

(2.6) é @ = [y, 1y, 0] com U, (z,y) = cor + cyxy + c5z* e U, (x,y) = e + crozy + 1y 1.6

um modelo de 6 graus de liberdade.

Finalmente o modelo é substituido na expressao da EPT (2.6) e sdo impostas
HEPT(d@) 0
dc; -
sistema linear de sexto grau com incognitas co, ¢4, cs5, cg, C19, ¢11. Uma vez resolvido o

as equacoes de estacionariedade 1 = 2,4,5,8,10,11 que conduzem a um

sistema, o campo de deslocamentos fica determinado e, consequentemente, via equacgoes
de congruéncia e de compatibilidade, obtém-se as tensoes. Sao omitidos os calculos pois

essa etapa é puramente ilustrativa.

O método dos elementos finitos é similar ao método RR porém possui trés grandes

vantagens:

i No método dos elementos finitos, os parametros do modelo cineméatico sao as proprias

deslocamentos em pontos colocados no dominio, ditos nos;

ii No método dos elementos finitos pode-se refinar o modelo cinematico aumentando o

grau dos polinémios usados ou aumentando o nimero de elementos disponiveis;

iii O método dos elementos finitos é facilmente automatizavel,

32 Capitulo 2. Revisdo da Literatura

Observe que o fato de atribuir deslocamentos em nés como parametros do modelo
implica restricdes quanto ao campo de deslocamentos: o tipo de forma e a quantidade de

nos dos elementos ditam o grau do polinémio usado, veja o exemplo:

No caso anterior, faga-se uma discretizagao com um tnico elemento finito quadrado
e como parametros do modelo cineméatico as deslocamentos nos vértices do dominio. Para
obter um modelo onde os parametros indiquem exatamente as deslocamentos em cada
no6 deve-se definir as fungoes de forma dos noés. Por exemplo, a funcao de forma do né 3
deve ser ®3(z,y) tal que ®3(0,0) =0, $3(0,1) =0, P3(1,0) =0 e P3(1,1) = 1. Tomando
Os(z,y) = 1+ x4 c3y + cazy, a imposicao das equagdes anteriores fornece: O3(x,y) = xy.
Analogamente encontram-se as equagoes de ®(x,y), $o(z,y) e Py4(z,y). Com essas o

modelo cinemdtico a ser substituido na expressio da EPT (2.6) é @ = [u,, 1, 0] com:
ﬂx(xv y) = uf@l(l’7 y) + qu)Q(J}, y) + U§®3($, y) + uiCI>4(:13, y)
ﬂy(L y) = u?{q)1($a y) + qu)Q(Zlf, y) + qu)g,([[), y) + UZ‘M(% y)

Uma segunda possibilidade seria a de discretizar o dominio com dois elementos
finitos triangulares: elemento 1 delimitado pelos vértices 1, 2,4 do dominio, com referéncia
local 1;,2;, 3; respectivamente, e elemento 2 delimitado pelos vértices 3,4, 2 com referéncia
local 1;,2;, 3; respectivamente (veja a figura 4). Nesse caso as fungoes de forma serdo do
tipo ®;(x;,y;) = ¢1 + cox; + c3y; e para cada um dos elementos o modelo cinematico é

descrito em relacao aos graus de liberdade locais:

ﬂ?(l’[, yl) = u§w7l)(1)1(xla yl) + U’éx,l)q)Z(mh yl) + uéxl)¢3(xl7 yl) 1= 17 2

g (wn,) = w1 (1, 1) + 0 Oo(n, yi) + By,) i = 1,2

3=1

Graus de liberdade

—
/
o elemento 2 Global
/
g Localel. 1
/
- Localel. 2
—1 elemento 1
/‘
v
/‘

1=1 2=2=3

Figura 4: Exemplo ilustrativo segunda discretizacao.

Apoés a etapa de integracao no dominio, cada elemento possui uma correspondente

matriz de rigidez K, e a equagao da energia potencial, apos a discretizacao decorrente do

2.2. Aproximagdo numérica pelo método de Galerkin 33

modelo assume a forma:

EPT(@) =Y U'K.U, - F,.U, (2.11)

, , 2 le Lz Lz Ly Ly I
Com n, sendo o niimero de elementos, que no caso é 2, e U, = [uy”, us”, us”, uy?, us?, uz’]"

o vetor de incognitas em coordenadas locais.

Em seguida, o modelo cinematico passa por uma etapa de “montagem” onde todos
os graus de liberdade locais sdo escritos todos em fungao dos graus de liberdade globais e
desta maneira, sdo suprimidos graus de liberdade redundantes (como os graus de liberdade
3; do elemento 1 e 2; do elemento 2 no exemplo anterior). Essa “montagem” pode ser feita
com o auxilio de um mapa de conectividade® (modo mais vantajoso numericamente) ou
simplesmente com o auxilio de matrizes de conectividade que sao matrizes esparsas L,

que fornecem a relacao (je = Le(j' , sendo U o vetor de todas as coordenadas globais.

Apos essa ultima operacao a EPT assume finalmente sua configuracao final:
EPT(@) = UTKU — F.U (2.12)

Onde a matriz K é a matriz de rigidez (quadrada e de ordem n) e n é o nimero total
de graus de liberdade do dominio discretizado (incluindo os graus de liberdade colocados
na fronteira I'p) que, no caso do exemplo anterior, sao 8. Impondo estacionariedade em

relagao aos graus de liberdade se chega ao sistema linear:

KU =F (2.13)

A 1ltima observagao é que a matriz K é singular e o sistema nao é soluvel porque
contém os graus de liberdade da fronteira I'p. Para a resolugao a 2.13 é rescrita colocando
por tultimo todos os graus de liberdade de K correspondentes aos nés colocados em I'p

(no exemplo anterior sdo os nés 1 e 4) e esse re-ordenamento resulta na segunte:

Koo K 0 F
Q0 Qrp Yol _ | e (2.14)
Kor, Kryrp| |Urp Fr,,
Pelo fato de que (jpD ¢ conhecido, pode-se remanejar o sistema e chegar a:
KooUo = Fo — Kor,Ur,, (2.15)

Que nao é um sistema singular.

6 Esse mapa armazena a correspondéncia em coordenadas globais de todas as coordenadas locais.

34 Capitulo 2. Revisdo da Literatura

2.2.2 0O método de Galerkin

O método de Galerkin é uma generalizacao da aplicacdo do método dos elementos
finitos a formulagoes fracas de equagoes elipticas que nao levem a uma forma bilinear
simétrica. Em tltima andlise, isto significa que a formulagao variacional nao equivale ao
problema de minimo de um funcional. Por exemplo, pode-se considerar a equacao de
difusdo e conveccao de temperatura estacionaria: (AT(Z) + b.VT(Z) =0 VI € Q) que,
quando conduzida a formulacgao fraca, gera um adendo a esquerda uma forma bilinear nao

simétrica.

Considera-se, entao, a forma bilinear genérica af(.,.), ndo necessariamente simétrica,

e a formulacao fraca geral:
Encontrar u € Hp () tal que: a(u,v) = F(v) Vv e HL (Q).
Com F'(.) um funcional sobre V.

O espaco Hf_ () é infinito dimensional e o método de Galerkin é uma espécie
de projecao” da solucdo em um espaco finito dimensional. Assim, tendo uma familia de
espacos finito dimensionais Vj, C V = H%D(Q) que possuam a propriedade de saturacao
em relacdo a V®, onde h é um pardmetro positivo que dita a dimensao do espaco, encontro
a solugao aproximada u, € Vj, que se “aproxima” ao maximo da solugdo u € V respeitando
a equacao da formulagao fraca. Portanto o método de Galerkin corresponde a seguinte

formulagao:

Teorema 2.3 (Método de Galerkin). Encontrar u, € Vj, tal que:

a(up,vp) = F(vy) Yo, €V, (2.16)

No ambito dos elementos finitos para o caso Lagrangeano, sera definido o espaco Vj,
dito dos elementos finitos. Seja portanto o dominio discretizado em elementos geométricos
K;, i=1,...,n. (no caso 2D, tridngulos ou quadrilateros, e 3D, tetraedros ou hexaedros,
etc.) e seja P,.(K;) o espaco dos polindomios de grau menor ou igual a r definido sobre o
elemento genérico K;. A familia dos elementos ditos lagrangeanos ({1j(Z)};=1,..n,) € tal
que representa uma base de P,.(K;) para a qual cada polindmio seu assume valor unitario
em um determinado n6 do elemento e valor nulo para os nds restantes. Portanto, sendo
{@;};=1...n, a familia de coordenadas do genérico né j, tem-se que 1;(&;) = d;;. Note que,
como os polindémios lagrangeanos devem interpolar n,, nds, esses terao grau dependente
do nimero de nés n,, e da dimensao do elemento (1D, 2D, etc.). A base lagrangeana é

também dita familia das fungoes de forma.

7 Tecnicamente, para poder caracterizar uma projecio, a(.,.) deve induzir um produto interno em

H%D(Q) pois nesse caso o problema seria equivalente a encontrar o elemento uj, no espaco finito
dimensional que minimiza a distancia em relagdo a u € H%D Q).

Isto significa que infj,_,0.4,ev, ||un — ully — 0, i.é. que com o refinamento da malha, o espago V}
finito dimensional tende a ocupar todo V.

2.2. Aproximagdo numérica pelo método de Galerkin 35

Seja por ultimo Tj, = U;=1,.. » K 0 conjunto dos elementos, pode-se definir o espago

dos elementos finitos como:

Vi =X; ={on € C°Q) : wnlx, € Po(K)), VK, € Ty} (2.17)

Com h = maxy,er, hi, € hi, = SUpz geg, [T — 7l
, ,1e n ,

Uma base natural para o espago 2.17 é a familia {¢},?] onde ¢; = 37 ¢y é a
soma, das fungoes de forma associadas ao i-ésimo grau de liberdade. Tais fungoes serao em
nimero iguais ao numero de elementos ao qual tal grau de liberdade pertence (n.). Desta

~ . n /

forma qualquer funcao de Vj, pode ser escrita como v, = 3, Vi¢;, tendo-se numerado
oportunamente, de 1 a ngy, os graus de liberdade do problema. Dessa maneira, os valores

do vetor V sao exatamente os valores da incégnita no né correspondente.

Escrevendo portanto u;, como acima e impondo a validade de 2.16 para todas
funcoes de forma do espago, pode-se obter o seguinte sistema de equagoes:

ﬂ,gl

> Uja(¢s, ¢i) = F(¢;) Vi=1,...,ng (2.18)

j=1
Toda funcao ¢; assume valor nulo fora dos elementos aos quais o n6 j pertence e
portanto a matriz de rigidez K;; = a(¢;, ¢;) é esparsa. E f4cil demonstrar que tal matriz é

simétrica se a forma bilinear é simétrica e que é definida positiva se a forma bilinear é
coerciva (ver p.ex. (QUARTERONI, 2008)).

Uma tltima observagdo em relagao a etapa de integracdao: normalmente é definido
um elemento de referéncia K e para todo elemento K; € T} é definida uma funcao ®;
tal que K; = CDZ(K) (veja a figura 5). Isso é feito para dinamizar a etapa de integracao
numérica usando a seguinte identidade:

[pade= [fom(©li(@i()lds (2.19)

7

Onde J(®;(£)) é o Jacobiano da transformagao ®;(€).

%

=)

Figura 5: Mapa do elemento de referéncia ao elemento da malha.

36 Capitulo 2. Revisdo da Literatura

2.3 O método de Newton para solucdo de sistemas n3o lineares

O método de Newton é um dos métodos numéricos mais conhecidos para a solucao
de sistemas nao lineares. No caso discreto, o sistema de n equagdes nao lineares em n
incognitas pode ser escrito da seguinte maneira: seja F (7) : R — R" tal que todos os
termos presentes estao do lado esquerdo, i.¢, de modo que seja valida F (0) = 0. O método

de Newton se escreve:

Dada uma aproximacao inicial iy, resolve-se iterativamente a 2.20 enquanto k <
MAXIT e ||F(u)||gn > Tol.

=3 — —

i1 = Ty + O (2.20D)

Onde Tol é uma tolerancia’ pré-estabelecida, M AXIT um limite para o ntimero

de iteragoes e ||F(1;)||gp» uma norma no espaco R™.

Note-se que (VF(i))i; = O (&) ¢ o Jacobiano da fun¢do e pode-se afirmar
J
que caso esse seja nao singular (det(VF(udy)) # 0) existe uma vizinhanga da solugao do

problema, u, para a qual a convergéncia é quadratica, i.é.:

@ — @g||gn < C||@ — @] |20 (2.21)

Com C' uma constante que dependera de uma série de parametros do problema.

O método de Newton para o caso discreto pode ser estendido para o caso continuo

da seguinte forma:

Sejam u € V e T € () duas funcoes que satisfazem um sistema de equagoes
diferenciais nao lineares L(u,T) = 0 e denotando por DL, 1,)(0u,dT) a derivada de

Gateaux'V avaliada no ponto (uy, Ty) na dire¢ao (du, dT'), o método de Newton se escreve:

Dada uma aproximagao inicial (ug,7p) € V' x @, resolve-se iterativamente a 2.22
enquanto k < MAXIT e 1@t Tee) (e Tillveg - oy

| (ur, Tk)llv x @

DL w1, (0u, 0T) = —L(uy, Tk) (2.22a)
Uk+1 _ UL ou (2 22b)
Tit1 T orT ’

E importante notar que a 2.22a é um sistema de equacgoes a derivadas parciais
lineares e para a sua resolugao sao usados métodos de aproximagao como o usado na se¢ao
2.2.2.

9

Muitas vezes é conveniente estabelecer uma tolerancia para o residuo relativo pois é um modo de
— @)= (@k—1)llzn

normalizar a convergéncia, por exemplo: ||rg|| G

10 Veja a secdo B.3 na pégina 114 no anexo B.

2.4. O problema: andlise global 37

2.4 O problema: analise global

Nesta secao, serao introduzidos alguns conceitos e discussoes para o caso do pro-
blema da andlise global. Nesta etapa algumas das nao-linearidades do problema serdo
evidenciadas. A formulacao geral discutida anteriormente nao serd valida pois foi desenvol-

vida nas hipdteses de carregamentos e relacao de congruéncia lineares.

Numa segunda etapa, denominada “local”, as hipoteses de linearidade serao reto-

madas e serd possivel fruir dos resultados até aqui desenvolvidos.

Como dito anteriormente, a esbeltez da tubulacdo considerada determina a pequena
relevancia da sua resisténcia a flexao e por isso essas estruturas podem ser analisadas
globalmente como cabos flexiveis. Matematicamente isso significa que as equagdes que

regem o comportamento estrutural sdo as de catendria (cabos flexiveis).

As equagoes da estatica da catendria derivam de uma formulagdo de equilibrio
diferencial geometricamente muito simples (veja, p.ex., (IRVINE, 1981)). Nesse caso o
unico esforgo solicitante considerado é a tracao na se¢ao transversal ja que a estrutura é

considerada flexivel. Na figura 6 pode-se observar a situacao que se procura descrever.

(x+u, y (x)+v)

Figura 6: Cabo flexivel deformado.

Fonte: (SANTOS; ALMEIDA, 2011)

38 Capitulo 2. Revisdo da Literatura

2.4.1 Equacoes de equilibrio

Sendo s a coordenada lagrangeana, H e V as forgas horizontal e vertical internas do
cabo, componentes da normal N que é o tnico esforco solicitante, as equagdes de equilibrio

de for¢a e momento fornecem:

dH(s) _
P = —fx(s> (223&)
W 0 (2.23b)

H(y+v) — V(z+u) + /0 Fuoly(s) + v(s))ds — /0 o (a(s) Fu(s)ds =0 (2.23¢)

Sendo F,(s) = [y f.(t)dt e F,(s) = JJ f,(t)dt os carregamentos globais impostos na
catendria nos primeiros s metros de comprimento e f, e f, a distribuigao de carregamento

nas diregoes x e y que derivam do peso submerso e da agao da corrente:

fi = 5eaDpaV2 () (sin(a + 6)7|(y) sin(a -+ 0) (2.24a)
fy=q— 1cdeanf(y) sin(a + 0) cos(a + 0)| f(y) sin(a + 0)| (2.24b)

2

Outra maneira de escrever as 2.24 é:

fo = Ca(f(y))*(sin(a + 0))*sgn(f (y) sin(a + 0)) (2.25a)

fy=a— Ca(f(y))*(sin(e + 0))* cos(ov + O)sgn(f (y) sin(a + 0)) (2.25b)

1 ¢4 é o coeficiente de arrasto do cilindro, D seu

Onde “sgn” é a fungao sina
diametro, p, a densidade da dgua e g o peso submerso da tubulacao. Uma outra observacao
é que com consideracoes de carater fisico, se a distribuicao da velocidade é monotonicamente
crescente e positiva pode-se afirmar que na configuracao estatica é licito desprezar a func¢ao
moédulo pois os dngulos finais serdo compreendidos entre 0° e 90° e f(y) serda sempre

positiva.

A equacgao 2.23c pode ser simplificada em sua versao diferencial substituindo as
relagoes 2.23a e 2.23b:

H(yg+ ") —V(zg+u')=0 (2.26)

11

2.4. O problema: andlise global 39

A relacao entre a normal e suas componentes é dada por:

H = N cos(a+ 6) (2.27a)

V = Nsin(a + 0) (2.27Db)

Sendo um cabo, a relagdo N(s) > 0 vale em todo seu comprimento.

2.4.2 Relacdes Cinematicas

Os angulos da figura 6 podem ser descritos como func¢odes das coordenadas de

referéncia e deslocamentos conforme se segue:

/
Tyt U

cos(a+0) = (2.28a)
V(@ +u)? + (g +)2
sin(a + 0) = Yo Y (2.28b)
V(b +u)? + (o + v')?
Introduzindo os espacos funcionais:
U= {(u,v) € H(Q) x H (D) |u(s) =T, v(s) =7 Vs € 'p} (2.29a)
V = {(0u,0v) € H(Q) x H'(Q)|du(s) =7, 6v(s) =7 Vs € I'p} (2.29Db)

Esses espacos sao ditos respectivamente cinematicamente admissivel e cinematica-

mente homogéneo admissivel.

Pelo principio do trabalho virtual, se (u,v) € U é o campo de deslocamento de
equilibrio, entao para qualquer campo virtual (du,dv) € V o trabalho virtual interno é

igual ao trabalho virtual externo, i.é.:
L L
/ Née(u,v)ds :/ [fa(s)ou+ fy(s)ov]ds ¥(du,dv) € V (2.30)
0 0

Na equacgao anterior, substituindo as relagoes 2.23a e 2.23b, integrando por partes,

usando a relagdo 2.27 e por fim a relagao 2.28:

/OL ()00 + f,(5)00] ds = —/O mfau + (jiv‘”’] ds

L
= [Hou'+Vi'lds=
0
L

= [Ncos(a+ 6)ou' + N sin(a + 0)dv'] ds
0

_ LN xy +u')ou + (y, +v')ov’

ds
0 \/x +u')? 4 (yy +v')?

40 Capitulo 2. Revisdo da Literatura

Em outras palavras:
x4+ u')ou' + (y, + v')o’
V(@b +)2 + (g +)2

de(u,v) = ((2.31)

Integrando a relacao anterior, chega-se na equagao diferencial cinematica, que é

exata e nao linear:

e(u,v) = \/(ah + w)2 + (gh + /)2 — 1 (2.32)

Note que € deve ser sempre positivo e que as relagoes cinematicas obtidas, assim

como as de equilibrio, sao validas para deslocamentos arbitrariamente grandes.

2.4.3 Relacdo Constitutiva

Como se sabe, na regiao elastica, para o caso de deformacao uniforme na segao
transversal (sem escorregamento entre as camadas), a densidade de energia potencial de

deformagdo é dada pela seguinte funcao convexa:

W(e) = ;EAEQ (2.33)

Onde FA ¢ a rigidez axial equivalente da secao transversal, dada pela soma de
rigidez das diversas camadas (conforme serd visto, a rigidez equivalente do isolante é
praticamente desprezivel). Daqui em diante, qualquer mengao ao termo E A refere-se a essa
rigidez equivalente. Dessa maneira pode-se definir a densidade de energia complementar
de deformagao que, para o caso de densidade de energia potencial de deformacao convexa,

pode ser obtida através da seguinte transformacao de Legendre:

W.(N)= Ne—W(e) (2.34)
Assim: ,
1N
N)=-— 2.
Ou em outras palavras:
N = FAe (2.36)

2.4.4 Principio da minima energia potencial total e simplificacbes possiveis

A energia potencial total associada ao estado de deformagao correspondente ao

campo de deslocamentos (u,v) é o funcional I1y : Y — R dado por:

Oy (u,v) = Ule(u,v)) — F(u,v) (2.37)

2.4. O problema: andlise global 41

v.()=V Ay)

H

Ancoragem

0(s) i
TDP y ! i
k Y

Figura 7: Cabo flexivel suspenso sob agao de correnteza estatica.

Fonte: (PESCE; MARTINS; CHAKRABARTI, 2005)

Onde U ¢ a energia interna de deformacao e F' o trabalho exercido pelos esforcos

externos. Ou seja:

Ule(u,v)) = /0 " W(eyds = EzA OL(e(u,v))st (2.38)
Flu,v) = / [fou+ fyv]ds (2.39)

A expressao anterior é altamente nao linear: substituindo a equagao 2.25, com a

notagao Cy(y) = %cdean f(y) e usando a relagao 2.28 pode-se obter a seguinte equacao:

g (vo + V)) Yo + v
Cal
o {<” tul vy |f(y)¢<xa+uf>2+<ya+vf>2 "
% £ 1) yo+v>) vo+ v/ A
+<x TU)) |f(y)¢<xa+u'>2+<ys+vf>z }*q i
(2.40)

Outra fonte de nao linearidade é a prépria relagdo 2.32.

Pelo principio da minima energia potencial total, o(s) equilibrio(s) do sistema é(sao)
dado(s) pelo(s) campo(s) de deslocamento (u,v) € U que configura(m) estacionariedade

do funcional II;. Em outras palavras a derivada de Gateaux'? de primeira ordem definida

12 A derivada de Gateaux é a generalizacdo do conceito de derivada direcional para o caso de funcionais
i.é. onde as variaveis de diferenciacao sao funcgoes. Ver a se¢do B.3 do anexo B na péagina 114.

42 Capitulo 2. Revisdo da Literatura

em (u,v) € YU em relacao a qualquer “diregao” (du, dv) € V se anula:

Sy =0 V(6u,dv) €V

A real expressao da variacdo do funcional energia potencial total é:

dw

L
STy = /O [deae — fobu— ubf, — f,00 — v fy] ds

Com:

_dfe(u+tou,v + tév)

0fe dt

t=0

_dfy(u+téu, v + tv)

t=0
A expressao acima assume uma forma suficientemente complicada:

=3 + u)(yo + ')
((zo +u)? + (yo + v')?)

8 f = Ca(f () sen(f(y) (o + v’)){

ot

2(x) +u') (yo + v')? — (yo +v')*
((zh + w)? + (yp +v)?)2

L @) (g) = 2ah W) v 5

((xh +)2 + (yh + v')2)3

6fy = Ca(f(y))*sgn(f (y)(yo + v/)){ Su/+

Tendo posto Cyq = $caDp, V2.
Assim pode-se escrever a formulacao variacional:

Encontar (u,v) € U tal que seja valida a relagao:

L / / / / / /

R i R L R o LIS A
0 V(@ +) + (g +v')?

- /L Ca(f(y))*sen(f (y)(yo + v'))

0 ((zh+u)? + (o +v)?)3

+ (yo +v")0u — 3(xf + ') () + v')Pudu’ + 3(zf + u')* (v + ') udv’+

— (2 + ") (yo + v')?0v — (g + o) (yo + v') 00 + 2(x5 + u')*(yp + ') vou'+

= (g + v) 0w’ + (w + ') (g + v') w00’ — 2(ap + u) (g + v yov’ f+

+ gdvds V(ou,ov) € V

{(ycg +u')?(yh +)P Su+

(2.41)

(2.42)

(2.43a)

(2.43D)

(2.44a)

(2.44D)

(2.45)

Uma simplificagdo possivel é a de considerar a for¢a que deriva da interacao fluido-

estrutura como proporcional a posi¢ao inicial da tubulacao, simplificacao essa que é valida

2.4. O problema: andlise global 43

para o caso em que a configuragao inicial (ndo deformada) é muito préxima da configuracao
final (deformada) e pode ser eficiente para perfis de corrente f(y)V. ndo muito complexos.
Deve-se observar que essa é uma hipétese diferente da de pequenos deslocamentos pois
os deslocamentos podem ser relevantes sem alterar significativamente o perfil geométrico.

Nesse caso valem as equagoes:

fu = 5eaDpaV2 (0) 50 () 71 (v) sin(a) (2.460)
fu =4 = 5eaDpaV2f(y) sina) cos(a) (y) sin(a) (2.46b)

Com: ,
cos(a) = o (2.47a)

sin(a) = Yo (2.47b)

A minimizacao da energia potencial total nesse caso leva ao préprio principio
do trabalho virtual (6Tly = [(Nde — f.ou — f,0v)ds = 0 ¥(du,d6v) € V). Portanto,
conclui-se que o sistema estd em equilibrio se, e somente se, a sua energia potencial total
assume um valor estacionario para qualquer deslocamento cinematicamente admissivel, i.é.

V(ou, ov) € V.

Por 1ltimo, cabe notar que, para esse ultimo caso, a segunda derivada de Gateaux

assume a seguinte forma:

L (d*W
2 o 2
0“Ilr —/0 < 1 4] 6) ds (2.48)
Com:
’ / r_ / / N2
520 — doe(u + tou, v + tov) _ ((yy +v")ou — (zf 4+ u)51;> >0 (2.49)
dt =0 ((zh+uw)? + (yh +v)?)?

Sendo a densidade de energia potencial de deformagao W (e) uma fungao convexa
e sendo §%¢ > 0 pode-se concluir que o funcional Iy é convexo V(u,v) € U e portanto

pode-se demonstrar a existéncia e unicidade do ponto de minimo'?.

2.4.5 Formulacdo Dual

Para o caso em que pode-se admitir que as forcas externas sao independentes dos

deslocamentos u e v, pode-se formular o problema de modo que os esforcos sejam as

13O teorema do método direto do Calculo das variacdes garante a existéncia. Veja (GELFAND; FOMIN,

2000) para detalhes.

44 Capitulo 2. Revisdo da Literatura

incognitas. Para isso tomando as equagoes 2.37 e 2.34 e adicionando o termo fOL u(H' +

fz) + (V' + f,)ds (que é nulo) chega-se ao seguinte funcional Lagrangeano:
L(H,V,u,v) = /L IN(H, V)e(u,v) — Wo(N(H,V))] ds—
—/ N(H, V) fou+ fo d5+/ w(H' + f,) + (V' + f,)] ds
Integrando por partes:
L(H. V.uv) = [*IN(H, V)e(u, v) — Wo(N(H,V))]ds — / C W H V] ds
Usando as relagoes 2.27, 2.28 e 2.32 note que:

L L
/ [W'H +v'V—N(H,V)e(u,v)ds = / N{u'cosa+ 60 +v'sina + 0 — e(u,v)}ds
0 0

_/ { %+u>+u@amw—¢%+wf—@4+vf}®
V(@ +w)2 + (g + /)2
_/= { %w%+U)+%@&%W}dS

@+)+ (g + 0

—/ H2+02—x0H yOV} ds

Assim o Lagrangeano assume a forma da energia complementar total 11, : Us — R:

.(H,V) =—U.(N(H,V)) — Gap(H,V) (2.50)

Sendo os funcionais da energia complementar interna e de gap definidos conforme

segue:
L
U.(N(H,V)) ::/ W,.(N)ds (2.51a)
0
Gap(H,V) : / VET ¥ V2 — 2y H — y,Vds (2.51D)

O espaco funcional U é o espacgo das fungoes estaticamente admissiveis e Vs o

espaco homogéneo associado, definidos conforme se segue:

U, ={(H,V)e H(0,L) x H'(0,L) : H'(s)+ fu(s) =0, V'(s) + f,(s) =0 Vs € (0, L)}
(2.52a)

V,={(6H,0V) € H'(0,L) x H'(0,L) : §H'(s) =0, §V'(s)=0Vs € (0,L)} (2.52b)

O ponto de equilibrio, como se sabe, corresponde ao ponto que torna a energia
complementar total estacionaria, i.6. (H,V) é o campo de esfor¢os de equilibrio se, e

somente se, nesse ponto se anula a primeira variagao do funcional:

SIL((U,V); (6U,6V)) = 0 V(6U,8V) € V, (2.53)

2.4. O problema: andlise global 45

Especificando os termos:

L1 d
/ [_ LEON(H, V) + abdH 4y bV — SN (H, V)] ds =0 YUV} €V, (254)
0

Com:

AN(H + t6H,V + t5V)
dt

_ HOH +VéV

INULY) = o VIETTE

(2.55)

Analogamente ao que foi feito na secao anterior, analisando a segunda variacao da
energia potencial complementar total conclui-se que essa é concava e, portanto, possui
somente um ponto de maximo:

ds <0

(2.56)

L 1 (HV —V&H)? L(H§V —V§H)?

5211, = —62U, — 6°Gap — — (1) ds—/ (1)
o FA (H2 4+ V?2)2 0 (H2 +V?2)2

A unicidade concluida tanto para o caso da formulacao variacional quanto para o

caso da formulacao dual é interessante pois como a formulagdo dual deriva basicamente da

propria formulagao variacional pode-se concluir que:

inf Tlp = sup I, (2.57)
(u,v)eu (H,V)el,

Essa informacao ajuda a avaliar a qualidade e eficiéncia de ambas as abordagens
comparando, apos a solucao, a energia potencial do sistema, energia que serd superestimada

pela abordagem primaéaria e subestimada pela abordagem dual.

47

3 Materiais e métodos

Neste capitulo a primeira parte é dedicada a aplicagao dos métodos e das formulagoes
desenvolvidos no capitulo 2. Em seguida os materiais e instrumentos utilizados no estudo séao

brevemente descritos enfatizando as vantagens e potencialidades da abordagem adotada.

3.1 Analise e formulacao do problema

No presente texto a analise estrutural é dividida em duas etapas. Na primeira, é
estudado o comportamento global do riser primando pela avaliacao dos esforgos solicitantes
resultantes e pela forma assumida pela estrutura. Na segunda, é conduzido um estudo
local da relevancia dos esforgos como pressoes interna e externa e efeitos anelasticos que

derivam da difusdo de temperatura.

Cabe observar que, na primeira parte, a teoria se refere ao problema global mencio-
nado no capitulo 2 onde discussoes e intuicoes foram desenvolvidas para o problema da
catenaria. Na segunda parte, sao retomados os conceitos do problema geral discutido no

inicio do capitulo 2, e no anexo A pois sdo validas as hipdteses introduzidas.

Uma consideragao importante é que os efeitos axissimétricos, dado que sao auto-
equilibrados, nao contribuem de maneira decisiva a forma assumida pela tubulacao e por
isso sao desprezados na analise global. Reciprocamente, tendo em mente que as curvaturas
assumidas pelo riser sao de pequena magnitude, pode-se assumir que localmente (em

segmentos de pequenos comprimentos) a geometria continua sendo axissimétrica.

3.1.1 Formulacdo completa do problema global

Nas se¢oes anteriores foram apresentados alguns conceitos relativos ao problema da
catendria elastica. Nesta secao sera considerada uma formulacao mais eficiente e compacta
que inclui também as nao linearidades do problema. Seja, como visto anteriormente, a

equacao de equilibrio da catenaria elastica em forma vetorial:

d (N dF>+f(1+e):0 (3.1)

ds 1+ eds

Sendo 7 = (zo + u, yo +v) = (z,y) € f: (far fu)-

Duas formulagoes distintas podem ser consideradas, que terao vantagens e desvan-

tagens na etapa numérica.

48 Capitulo 3. Materiais e métodos

3.1.1.1 Formulacdo fraca classica

Antes de proceder formalmente a formulagao fraca do problema, substitui-se as

relacoes cinemética 2.32 e constitutiva 2.36 na equacao 3.1 obtendo a equacao 3.2.

d {EA(/l‘/2+y/2_1> |:1 0:| |:x’ }_F\/W fx(F,S)] _ [8:| (32)

& /$/2 + y/2 0 1 y
e conforme visto:

/

dy

/) __ dzx /I __
Onde 2’ = §f ey =

£a(78) = Clf) —L—sen(F 1)) (3.30)
(@ +)2
x/y/2

—————sgu(f(y)y) (3.3b)
(27 +y?)>

fo(7s) =q—Ca(f(y))

A equacao 3.2 é nao linear e para sua resolugao recorre-se ao método de Newton,
que ¢ especificado na segao 2.3 (pagina 36). Denotando o sistema de equagbes 3.2 com
L(x,y) = 0 e omitindo os calculos, a derivada de Gateaux DLiaz ay)(T,7) de L avaliada
no ponto (Z,y) na diregao (Az, Ay) é:

DL(pz2y) (T, 7) = (3.4)

Dﬁ%Am,Ay) (7, 7)]
D‘C%Am,Ay) (T7 y)

Com:

d EA((T’2 +7%)7 - @’2> EAZy
1 — o\ / /
DE(Ax,Ay)<x’y) - ds{ (2 +y/2)g Az + (z2 +y/2>§A +

+ Casgn(f (y)y’){ - Wm’ + W

(f@))* (37297 +7) Ay,}

Ay+ (3.5a)

+

(TI2 + g/2) 2

. d| EAzy EA((z? +77)% —T’z)A A\
=—q—— 5 y
(f’Q _|_y/2)§ (TIQ +y/2)5
N2 (— 7272 + 74 P Nt 12
VO3 +7") L 2O @y (3.50)
(T” +77)? (T” +77)
2(f@)°7T%y qz’ , qy :
o AY T Ar + ——— Ay
(T” +77) (T? 4+ 7y?)2 (T"” +77)2

+

O método de Newton consiste na resolucao iterativa (as incognitas sdo as fungdes
(Az, Ay) a cada iteracdo) das equagoes lineares a derivadas parciais dada uma fungao de

aproximacao inicial (xg, yo):

DL (az,ay) (T, Yr) = —L(Tk, Yr) (3.6a)

3.1. Andlise e formulagdo do problema 49

x x
k1| k i
Yk+1 Yk

O procedimento iterativo deve continuar até que se satisfaga um critério de conver-

Azx

N (3.6b)

géncia ou até que seja atingido um ntimero maximo de iteragoes pré-estabelecido. Como
se sabe, ndo é garantida a convergéncia do método para qualquer valor inicial (xg, o).
Computacionalmente o procedimento é potencialmente oneroso pois, para cada iteracao do
método de Newton, a resolucao da equacgao linear parcial associada conduz a um sistema

linear nao simétrico.

Introduzindo uma notacao mais compacta que engloba as diversas parcelas referentes

as equagoes 3.5 e 3.2 e rescrevendo a equacao 3.6a tem-se:

i Av (g, yk) Az (Tr, Yi) Az’ n Bii(zk, yx) Bia(Tr, yi) Az I
ds | | Aot (zp,yr) Ase(zr, i) | | AY Boi(zk, yk) Boz(zk,yk)| | AY (3.7)
0 Cio(zp,yu)| | Az | L)
0 Coo(wk,yr) Ay 52($kayk)
Ou em forma vetorial:
d L dAz L dAz e

T {A(xk) o } + B(z},) e + C(ap) Az = —L(x3,) (3.8)

Onde: ()

EA((2? +yP)2 —
A (2r, yi) = 3 (3.9a)

(2% +yr)?

EAxy,
Avo(zr, yp) = Aot (T, yp) = ———F7F 3.9b
ol y) = AnCon) = 0 (390)

EA (:L’/Z +y/2>% 2
Ao (1, yx) = (k,2 k,Q 3 k) (3.9¢)

(z +yil)>
o () oyse
Bii(zk, yr) = _2Cd5gn(f(yk)yk)W (3.9d)
(f () (327202 + vt
Bia(x, yi) = Cysgn / 3.9¢
12(Tk, Y) = Casgn(f (Yr)Y) (@2 + PP (3.9¢)
gz, () (P — i)
By (g, = ——— + Cysgn ; ; 3.9f
21(Zk, Yr) gyt PO (f (we)ur) (@2 + y2)? (3.91)
! 2,03,/

Baalies) = — 2~ 2Cusgn((g LT (3.9¢)

(2 + @) (@} + i)

50 Capitulo 3. Materiais e métodos

Ci1(zr, y) = Cor (1, yx) = 0 (3.9h)
/ /3
Cia(wr, yp) = 20ngH(f(yk)y;c)]W (3.91)
! /2
Coa(Tk, Yx) = —QCngn(f(yk>y;g>f(y(]€ig fljg)kyk (3.9)

A formulacao fraca ou variacional se obtém multiplicando a equagao linearizada
em forma forte 3.8 por uma func¢ao (na realidade um campo de fungoes) test, integrando
e finalmente usando a férmula de Green para o primeiro adendo. Cabe notar que as
condigoes de contorno sao de Dirichlet no TDP, onde é colocado o sistema de referéncia
(2(0) = y(0) = 0) e mistas no vinculo com a plataforma onde se tem (y(L) =pe H(L) =0
) sendo p a profundidade na qual é colocado o TDP. Na realidade, a condigao H(L) =0 é
pouco realista para o caso de uma plataforma de petroleo pois essa tem uma dindmica
propria e impoe forcas ou deslocamentos na extremidade. O estudo acoplado da dindmica

da plataforma e do cabo vai além do escopo do presente trabalho, para o leitor interessado
veja (MONTANO; RESTELLI; SACCO, 2007).

Sendo portanto os espagos das funcoes incognitas e fungoes teste respectivamente:

U = {(Ax(s), Ay(s)) € H'(0, L)x H'(0, L) : Az(0) = Ay(0) = 0 = Ay(L) = 0} (3.10a)

V = {(dx(s),dy(s)) € H'(0,L) x H'(0,L) : 6(0) = dy(0) = oy(L) =0} (3.10b)

A formulacao fraca do problema nao linear e do passo de iteragao do método de

Newton é:

Encontrar Ar = (Az, Ay) € U de modo que a seguinte relacao seja valida:

L
/ [—A()dA‘"”d‘;‘” B dAx(Sx—i—C(xk)Ax(Sx
0

L - -
s ds + B(z,)ds ds :—/0 L(z1,)0xds Voxr €V

(3.11)

Cabe observar que o termo a direita também ¢é integrado por partes e por isso

convém distinguir quatro parcelas de £(2}) que sdo:

EA 2 2 1
Wﬁ) 3.1%)

L (xr, yr, Ni) = \/fff + Y2 fo(Tr, yr) (3.12b)

EA(xP +yp? —1
L2 2k, yr, Ni) = (\/\/;)yfe (3.12¢)
Ty + Yy

Ll (zg, yp, Ni) =

3.1. Andlise e formulagdo do problema 51

Onde os termos designados com o indice A sao integrados por parte e os designados

com B nao, ou seja:

—/(JLL(x;)a}ds=/OL

A equagao 3.11 é pronta para a fase de discretizagao pelo método de Galerkin.

ds (3.13)

L2 (k. Yry Ni) oy’ L% (2, Y, Ni) 0y

Ly (w1, Y, Ni)] [o'] B

Ly (xr, yr, Ni)] [ox

3.1.1.2 A formulac3do fraca mista

Nesta se¢ao é apresentado um método alternativo para a formulagdo do problema.

Cabe introduzir uma pequena discussao do porqué dessa nova abordagem:

Note que a formulacao fraca 3.11 equivale a imposi¢cado em maneira fraca da equacao
de equilibrio. Desta forma, quando se procede a discretizacao, o resultado aproximado
nao satisfaz em todo o dominio a equacgao de equilibrio: isso ocorre pois nas fronteiras
dos elementos nao é satisfeito o principio de acao e reacao dada a descontinuidade das
deformagoes (descontinuidade da derivada dos deslocamentos). O que ocorre é que com
o refinamento da malha, essas descontinuidades (de salto) tendem & zero e por isso é
garantida a convergéncia, no entanto se a malha nao é suficientemente fina, podem existir

erros relevantes na estima da tracgao.

Uma solucao para o problema exposto é uma formulacao alternativa onde a tracao
passa a ser uma incognita junto ao campo de deslocamentos e a formulacao fraca é feita
em duas equagoes, a de equilibrio e a de congruéncia. Dessa maneira a continuidade da
tragao e dos deslocamentos é imposta implicitamente nos espagos funcionais considerados.
O preco a ser pago é que nesse caso, na solu¢do aproximada, nao somente a equacgao de
equilibrio, mas também a de congruéncia nao serao satisfeitas em todo o dominio. Além
disso o fato de adicionar uma variavel ao problema aumenta a dimensao do sistema linear
a ser resolvido a cada passo do método de Newton e requer uma aproximacao inicial

também para a tracao.

Note que na se¢ao 2.4.5 na pagina 43, a formulacao foi conduzida a um problema
puro em esforcos, o que corresponde a extensao da idéia mencionada no paragrafo anterior
a um caso onde a equacao de equilibrio é imposta implicitamente no espaco funcional e
onde a formulagao fraca corresponde a imposicao da equagao de congruéncia em modo
fraco (e ndo da equagdo de equilibrio como no caso da formulagao priméaria). E importante
notar que esse procedimento foi possivel somente para um caso simplificado do problema

real e que nem sempre é possivel obter uma formulagao pura em esforgos.

A idéia exposta é a base do chamado mized or hybrid finite element method. Para
o leitor interessado veja (SACCO, 2007).

52 Capitulo 3. Materiais e métodos

Nesse contexto a formulagao forte do problema sera um conjunto de trés equagoes
geradas com a substituicdo da lei de Hooke 2.36 nas equacoes de equilibrio 3.1 e de

congruéncia 2.32:

d { EAN d7 - N
as (EA+Nds> #F (14 gg) =0 (3.14)
1 /dF 1 N \?

Conforme feito na secao anterior, o sistema nao linear de equagoes a derivadas
parciais 3.14 denotado com L(x,y, N) deve ser linearizado, e para isso se usa a derivada

de Gateaux. Mais uma vez omitimos os calculos pois sao tediosos.
— d EAN EA 2
1 S _ _
Dﬁ(Az,Ay,AN) ("L‘a Y, N) - CLS{EAHVAZE, + <E,14_'_]\/,) I'IAN}+

+ (1 + E]\il) Cdsgn(f(y)y'){ — mAx' + W
(@) 7y Ay,} | Casan(F@T) @) 5
(T’Q +@,2)g 2

Ay+ (3.15a)

. d | EAN EA \?
D 2 T..N) = —{ —— A ! () 7/AN
Liav.agam (@0 N) = { AN Y T \Egasw) Y }+

al A TP (=224 0") | 2f @) @)y
- — C n _ AI/ : A
<1 i EA) e[0T){ (T? +7?)2 " (T2 +7?)2 yt
| U@y -
@12 _1_?2);

)Ay'} 4 (q — Casgn(f(@)7) ((ifg?:?g;) ElAAN

(3.15b)

— 1 N
DE?ALA%AN) (T,y, N) =7 Azx' + 7 Ay’ — A (1 + EA> AN (3.15¢)

De maneira analoga a secao anterior o método de Newton em forma vetorial se

escreve:

Sendo Au = (Az, Ay, AN) a incognita e uy = (xg, Yo, No) uma aproximagao inicial
da solucao, deve-se resolver iterativamente o problema 3.16 até que seja satisfeito um

critério de convergéncia ou se chegue a um nimero maximo de iteragoes.

{1 = 0, + Au (3.16b)

3.1. Andlise e formulagdo do problema 53

Para cada iteracdo do método de Newton é feita a formulacao fraca de 3.16a
que se obtém de modo ligeiramente diferente do usado na seg¢ao anterior: para as duas
primeiras equagoes o procedimento ¢ o mesmo e através da multiplicagao escalar seguida de
integracao e integracdo por partes se gera uma tnica equacao integral. A segunda equagao

integral se gera de modo analogo. Observe a equacao 3.17 para entender o procedimento:

D[,l (ﬁ) S L £1(ﬁk) 5
' - : 1
/0 DL (U)] 5y]ds J @) || sy |45 VORI EY (31T)
/ " DL (@) 6Nds = / " £3(i).6Nds VoN € Q (3.17h)
0 0

Sendo que Q = L?(0, L)'
A equacao 3.17 é pronta para a fase de discretizacao e implementagao do método
de Galerkin. Como para a se¢ao anterior convém adotar uma notacdo mais compacta para

a formulagao fraca, conforme a seguinte:

— Ax/
/L_ AT (2, Ye, Ne) - A (@r, Yy Ni) - AT (2, Yk, Ni) Ay ox'’ N
o | AR (zk, Yk, Ni) Ay (@k, Yo Ni) A53 (2, Yk, Ni) AN oy’
N 7 (i s Ni) - B (i, ye, Ni)| | Aa? o | N
Bgi(xkaykka) B%(xkayk7Nk) Ay/ 6?/
- - (3.18a)
_ Az
N Cli (zr, y, Ni) - CT3(z, i, Ni) - CT3(2, Y, Ni) Ay oz ds —
(C51 (@r y, Nie) - C35 (s s Vi) G s Ni)] | oy
:/L ‘Cﬂl(xkaykaNk) ox' B £g1($k7yk7Nk) ow ds
0 | LR*(w, Y, Ni) oy’ LB (x, yr, Ni) oy
A !
/L[x' - (1 5)] A$’ 5Nds:—/L 1(:c'2+y’2) 1(1+N’“) SNds
o LR T BANTT EA .A.?/Jv o |2\)Ty EA
(3.18b)
Onde:
- EAN,
AT (@r, Yr, Ni) = Ay (Th, Y, Ni) = m (3.19a)
AL (@ yi, Nie) = A5y (2, Yo, Nie) = 0 (3.19b)
EA \?
m N = —— 1
A3 (T, Y, Ni) (EA—{—Nk) k (3.19¢)

1 Veja o anexo B para a defini¢do do espago funcional L?(£2)

54 Capitulo 3. Materiais e métodos

EA 2
A (4, e, Nip) = () "

EA+ Ng
- Ny o (f (uw)) 2
Bu(l’k,yk, Nk) =-3 (1 + E/l) Cdsgn(f<yk‘)yk)m
() ol

Ny,
Bi5(zk, Yk, Ng) =3 (1 +) Casgn(f(ye)yi) 5
" EA (22 +y2)2

(Fe))? (22292 — o)
5
(7% +yi2)>

(f(we))? (2252 — 2y

N /
B3 (wk, Y, Ni) = (1 + Eﬁl) Casgn(f (yr)yr)

m - Nk /
822($k,yk, Nk) = <1 + EA> Ongn(f(yk)yk) (l‘g + yg)g

Cl1(xr, Yr, Ni) = Coy (g, yr, Nig) = 0

Ciro, N =2 (1+) Cusent st U
Ciro N = =2 (1+ 55) Gy /0L
it w0 = BT = (= Cusnt st T
L3 @k, yr, Ni) = mx;
L5 (xh, yi, Ni) = %y;

N
LE (xr, ye, Ni) = (1 + EA) fa(zr, yi)

N
LB (2, Yr, Ni) = (1 + EA) fo(@k, yi)

3.1.2 Discretizacao e aproximacao com o método de Galerkin

(3.19d)

(3.19¢)

(3.19¢)

(3.19¢)

(3.19h)

(3.19i)

(3.195)

(3.19k)

(3.191)

(3.19m)

(3.19n)

(3.190)

(3.19p)

(3.19q)

Como observado anteriormente, a resolugao completa do problema é dada pela

resolucao iterativa das equacgoes 3.11 e 3.18 respectivamente para os casos de formulagao

classica e formulagao mista. Nesta se¢ao é descrita uma iteracao do método, isto ¢ a

resolucao das equagoes 3.11 e 3.18 pelo método de Galerkin.

3.1. Andlise e formulagdo do problema 55

3.1.2.1 Meétodo de Galerkin - formulacao classica

Seja a particao T, do dominio [0, L] sendo h o pardametro de dimensao dos elementos
(quanto menor A menor o comprimento dos segmentos) e seja o conjunto de elementos
{Ke}:; tal que Ule, K, = T}. Introduzindo o espago dos elementos finitos U;, C U onde
a deflexao interna de cada elemento é a interpolacao polinomial dos deslocamentos de seus

nos, i.é.:

€ P,(K.) VK, € Ty}
(3.20)

Uy, = {[Azn, Ays] € CO0, L)) x C°([0,L]) = Azy|, Ay

Ke

Dois parametros caracterizam a aproximacao: a quantidade de elementos da particao
(inversamente proporcional a h) e o grau de aproximagao polinomial . Como se trata de
um dominio 1D, a quantidade de nés requerida para cada elemento é n{ = r + 1, suficiente

para a interpolacao do correspondente polinémio local.

Como ja dito, a idéia do método é encontrar o elemento do espaco 3.20 que minimize
a energia potencial total de deformagao. A validade do método se da pelo fato do espaco

U, possuir a propriedade de saturacdo? em relacdo a U.

Seja n, o numero de elementos da malha e para o caso de malha uniforme K, =
(eh,eh+h)e=0,1,...,n.—1 onde h = nL Tomando um elemento qualquer considera-se
o campo de deflexoes (ou de deslocamentos):

Ne—1 n%—l

Azp(s) = > > AX{¢S (3.21a)

e=0 =0

ne—1ng—1
Apls) = X > AVSS (3.21b)
e=0 =0
Sendo ¢§ a funcao de forma do e-ésimo elemento relacionada ao i-ésimo né (i =
0,1,...,n¢ —1).

n

Com essa discretizagao, um nimero finito de parametros (deslocamentos em cada
n6 do dominio) é suficiente a caracterizar todo o campo de deslocamentos. Observe-se
que, excluindo os nés de fronteira, o ultimo né de cada elemento coincide com o primeiro
do elemento seguinte, isso significa que para o caso de um espago de aproximagao com
polindmios de primeiro grau (dois nés por elemento) sao presentes n,, = 2n, — n. + 1 nés
e para polindmios de segundo grau n,, = 2n, + 1 pois aos nés anteriores se adiciona um
né interno para cada elemento. Assim, como as incégnitas sao duas, sdo necessarios 2n,,

parametros para a descricdo completa do estado de deflexdo do problema.

Considerando que cada né possui uma ou duas fungoes de forma (uma para nos

internos e de fronteira do dominio e duas para os restantes) e considerando v, (s) =

2 Ver a péagina 34 para a definicdo.

56 Capitulo 3. Materiais e métodos

nec

gbz() a soma das fungoes de forma do n-ésimo né que possui ne. = ne.(n) elementos

em comum, a 3.21 pode ser rescrita da seguinte maneira:

nn—1

Axp(s Z AXpn(s) (3.22a)
np—1

Ayy(s Z AY, 10, (5) (3.22b)

O sistema linear correspondente se obtém substituindo o campo 3.22 na equacao

3.11 e tomando 2n,, deslocamentos virtuais linearmente independentes iguais exatamente a

[¥n(s),0] ou [0,,(s)] onde n =0,1,...,n,. Veja a 3.23 para o sistema linear equivalente:
Kyx(we,ue) Ky (zr)| [AX F(xr, yr) (3.23)
Kyx(ze,ye) Kyy(ze,ue)| [AY Fy(zk, y)

Onde, tomando os termos das equagoes 3.9 e 3.12:
s d¢ d% dw]
Kxx,ij (k. Yr) / — Ay (@g, yr) =2 —— 4 Bu(zp, yp) =i+
! Z ds ds ds (3.24a)
+Cll(xk7yk)ijids Za] = 1727"'7nn
”“ dvy,; dy; dy;
Kxv,ij(xk, yr) / — Ao (wp, yr) = vy dvs + Bia(xy, yk)ﬁzbﬁ
ds ds ds (3.24b)
+612(xk‘ayk’)¢]¢lds Z)] - 1a27"'7nn
g dup; dy);
Ky xij(zk, yk) / —Aoi (T, yr) = vy dvs + Bor (xy, yk)ﬂ%“f‘
ds ds ds (3.24¢)
+Czl($k;yk)¢g¢zd5 Zu] - 1727"'7nn
g dy; i), dy;
Kyv,ij(Tk, Yr) / — Aoz (T, yr) = vy dvs + Bao (2, yk)ﬂl/fﬁ‘
ds ds ds (3.24d)

+622(17k7’yk)?/1j2/1id5 ihj=1,2... n,

Nec d)
FXZ(xkayk Z/ EA xlwyk)f _£E<$k7yk)wzds 1= 1727"'7nn (3246)

Nec d)
Fyl(.l?k, yk Z/ £2 .Cl?k yk)f — EQB(.fk, yk)wzds 1 = 1, 2, ey Ny (324f)

A quantidade ne. = ne.(ij) indica o nimero de elementos em comum entre os nés i
e 7. Esse nimero pode ser zero para nos que pertencem a elementos diferentes, um para nés
diferentes pertencentes ao mesmo elemento e dois para nds nas extremidades de elementos

onde vale também 7 = j.

Na realidade a organizacao da matriz é um pouco diferente pois os nés de Dirichlet
sao colocados por ultimo por uma questao de implementagao, mas essa discussao sera

abordada numa parte posterior do texto para evitar repeticoes.

3.1. Andlise e formulagdo do problema 57

3.1.2.2 Meétodo de Galerkin - formulacao mista

A aproximagao com o método misto é muito similar a formulagao classica contudo
uma diferenga importante é o fato de adotar espacos polinomiais diferentes entre variareis de
deslocamento e de forca. Essa abordagem é sugerida pelo préoprio fato que a distribuicao de
tracdo possui regularidade® menor que a distribuicao de deslocamento pois é proporcional
a derivada dessa ultima. Assim, os espacos funcionais de aproximacgao serao do seguinte

tipo:

Uy, = {[Azn, Ayy] € CO0, L)) x C°([0,L]) = Ay|,, Ay

€ P(K.) VK, € T}
(3.25a)

Qn = {[AN,] € L*([0, Z]) : ANy,

€ Py(K.) VK, € Ty} (3.25b)

Com t < r. Note que Py(K,) é o espago onde os valores sao constantes no interior
de K..

Com esse fato, se conclui que o nimero de nés do problema difere em deslocamentos
e tragoes. Seja @, (s) n=1,2,...,n, asoma das fungoes de forma relacionadas ao n-ésimo

n6 da varidvel tracdo, onde n,, é o nimero total de nds relacionados ao campo de tragoes.

Como feito na secao anterior, apos a substituicao dos campos de deslocamento e de
tracao aproximados na 3.18 e impondo os deslocamentos virtuais como sendo as 2n,, + n,;

somas de fungdes de forma associadas a um mesmo no, se chega ao seguinte sistema linear:

K% (T, Yo Ni) Ky (20, Uy Ni) K% (2, i, Ni) | [AX Fx (2, e, Ni)
KV (2, vk, Ne) K¥y (Tr, Uk, Nio) KPn 2k, yk, Nie) | |AY | = | Fy (28, Yk, Ni)
K% x (@, yk, Nie) KRy (2r, Y, Ne) Ky (@r, v, Ni) | |AN Fn (vg, Y, Ni)

(3.26)

Onde, tomando os termos das equagoes 3.19:

Mec dap; dify dy;
K% N /) ,N ! B ’N - i
XX Z](:Ek:?yk?? k: Z All xk‘ yk‘ k) d d + 11('1:]6 yk k') dS QZJ _I_ (3273)
+ C (@, Yo, Ni)ojibids - 4,7 = 1,2, ny
Nec dy; d; dy;
K Ny / Ny B Ne) =24
Wy (T, yr, Nio) Z — A (Th, Yo, Ni) == s ds 15(@k, Y Nie) ds bit (3.27h)

+ Cl2($ka Yk Nkﬁ%%@dS i,j = 1, 2, o,y

A regularidade de uma fungao é uma nocao que avalia pontos criticos como angolos, assintotas e
cuspedes. Para quantificar essa nocao se estuda a continuidade das derivadas da funcao: por exemplo
uma fungio em C!(Q) é uma fungio continua com derivada continua e uma fun¢io em C2(f2) é uma
funcdo continua com todas derivadas até a segunda ordem continuas. Assim pode-se afirmar que
C?(Q2) C C1() e que uma funcio genérica de C(2) possui regularidade maior ou igual a uma fungio

de CH(Q).

3

58 Capitulo 3. Materiais e métodos

Nec d
KXN2j<xk7yk7Nk Z/ AlS xk,yk,Nk)SD] (;Z) +Cg(‘rk7yk7Nk)90]wldS+
(3.27¢)
1=1,2,....n, =1,2, ny
— dy; dy; dp;
K 7) 7N /) JN] B) 7N - [
v X,i5 (Tks Uiy N Z — A5 2k, Yr, Ni) = L ds + By (2k, Yk, Ni) 1s v+ (3.270)
+ C (g, Yk, N)¥jbids 0,7 =1,2,...,n,
”“ dep; dap; d
KVy i (zr, Yk, Ni) = / — A% (T, Yi, Ni) d% d¢ + By (xk, yr, N) i 1/%
(3.27e)
+ Co5 (ks Y, Np)jibids 0,7 =1,2,...,n,
Nec dw
Ky n.ij (T, Yk, Ni) Z/ — A% (ks Yi, Nip)p—— e + Co3(x, Y, Ni)pjiids+ (3278

1=1,2,...,n, =12, .. Ny

Nec

K7y o (2, v Ni) = Z/ kdgpl i=1,2 i =1,2,. . (3.27g)

K7y o (2, v Ni) = Z/ ,;dw]gol i=1,2, i =1,2,. .0, (3.27h)

Nec

1 Ny
Ky i'($k>yk7Nk) - / EA <1 +) ¥j szds iaj = 172? sy Mg (3‘271)
W 2) ma\l T Ea) ¥

- m Nec d i m .

Fx; (zr, yr, Ni) = Z/ L3 (@, Y, Ni) d@D — L5 @k, g, Ni)tuds i =1,2,...,n,
(3.275)

= m o= m2 d¢ m2 s

Fy; (g, yr, Ni) = Z E (T, Yrs Ni)—— Is — LBk, yp, Ne)tids i =1,2,...,n,
(3.27K)

Nec N 2

3.1. Andlise e formulagdo do problema 59

3.1.3 O problema local em sua formulacao axissimétrica

Nesta secao sera feito um estudo dos efeitos axissimétricos relacionados ao pro-
blema. E importante notar que os efeitos axissimétricos nao influenciam a forma que
a estrutura assume pois suas componentes sao equilibradas em todas as dire¢oes. Uma
outra consideracao importante é que esses efeitos podem ser estudados localmente* pois
os gradientes dos esforgos (pressoes e mudangas de temperatura) aos quais o corpo é
submetido sao infimos e dessa maneira é possivel estudar somente uma porc¢ao pequena do

comprimento da tubulagao.

O problema estrutural é, na realidade, acoplado ao problema térmico pois as
constantes de elasticidade (F e G) sdo dependentes da temperatura assim como a constante
de difusao térmica (a)) é dependente do estado de tensao local. Esse efeito serd desprezado
pois é pouco relevante e a abordagem utilizada para a componente axissimétrica e estatica
do problema sera a de considerar um isolamento perfeito, i.é.: a temperatura no interior da
parede do tubo interno sera considerada igual a do 6leo que flui e a temperatura externa a
parede do tubo externo seré considerada igual a do oceano. Nessa 6tica a solucao da parte

axissimétrica do problema é composta de duas etapas:

i Solucao do modelo de difusao térmica que é, no méaximo, bidimensional, dada a

axissimetria do problema;

ii Inclusdo do efeito térmico no modelo estrutural axissimétrico através dos contributos
forcantes que derivam da variagao de temperatura e consequente expansao/contragao

da estrutura.

3.1.3.1 Difusao térmica

A temperatura do fluido, dada a hipdtese de isolamento perfeito, permanecera
inalterada por todo o comprimento do riser, ja a temperatura do oceano sera considerada
em uma primeira analise constante e posteriormente serd incluido o efeito da variacao da
temperatura externa usando como parametro uma curva de temperatura por profundidade,

como na figura 8.

Da equacao de Fourier e do balango energético pode-se obter a equacao que rege a
difusdo de temperatura no caso de material isotropo mas nao homogéneo (pela presenga

de mais de um material isotropo):

—div(c(r)VT(Z)) =0 VZ e
T(R;) = Ti(2) (3.28)
T(R.) =T(z) ,

Com a expressao localmente refere-se ao fato de tomar um pequeno comprimento da tubulagdo e nao
ao significado que a palavra assume usualmente no contexto do estudo de vigas (i.é. estudo das tensoes
a partir dos esforgos solicitantes de uma segdo transversal).

60 Capitulo 3. Materiais e métodos

Temperatura (C°)

0° 4° 8° 12° 16° 20° 249°
0 T T T T T
500 |- —
Thermocline
1000 |- 2l
1500 |- =
Profundidade

Figura 8: Temperatura da dgua do oceano em relagdo a profundidade.

Fonte: http://www.windows2universe.org/earth/Water/temp.html (BERGMAN,)

Com ¢(r) o coeficiente de difusdo térmica que é fun¢ao do material e portanto do
raio r dada a geometria da tubulagao. Se os materiais ndo apresentassem isotropia c seria

uma matriz simétrica e definida positiva.

Finalmente se procede a formulagao variacional: nesse caso o problema é full-
Dirichlet com condi¢des nao homogéneas e assim sendo se usa uma mudanga de varidvel
com auxilio de uma fungao dita de relevo R = R(r,z) construida ad hoc em modo a

satisfazer as seguintes relagoes:

(3.29)

E suficiente tomar uma funcio que interpole linearmente os dados na fronteira.
Em seguida o problema se constréi com a variavel T'(r, z) = T(r, z) — R(r, z) que assume,
por definigao, valores nulos na fronteira de Dirichlet (r = R; e r = R,). Substituindo a
nova variavel, multiplicando a equagdo por uma fungao de teste de Hj (), integrando a
direita e a esquerda a EDP e usando a formula de Green se chega a seguinte formulacao

variacional:

http://www.windows2universe.org/earth/Water/temp.html

3.1. Andlise e formulagdo do problema 61

Encontrar 7' € H}(Q) de modo que:
/Q (r\VT(Z)V(@)AV(T) = — /Q c(r\VRE)VH(D)AV(Z) Vo€ HAQ) (3.30)

Sendo um problema axissimétrico se reduz a um problema 2D e, no caso de
temperaturas externas constantes, se reduz adicionalmente a um problema 1D. Para o caso
2D deve-se impor condigoes de contorno também na parte superior e inferior da superficie,

que serd uma condigio de Newmann de fluxo de calor nulo (4% =0 € I'y).

Finalmente, especificando os extremos de integracao a formulacao, pronta para a

fase de discretizacao é:

Encontrar T’ € H}(Q) tal que:

Re T (r,z) 0o(r,z) AT (r,z) dp(r, 2) B
/ Jo T e T e rand= =

R (OR(r,z)0 OR(r,2) 0
_ / / { (r,2) ¢g;z)+ g;Z) ¢é7;z)}rdrdz Vo € H (Q)

(3.31)

Uma vez resolvido o problema 3.31 resta fazer a substituicio T'(r, z) = T'(r, z) +
R(r, z).

Operacionalmente o que se faz é construir o sistema linear com uma base de um
subespago de H'(Q) (ndo de Hf ()) e sucessivamente passar a direita a parcela correspon-
dente ao contributo de Dirichlet uma vez conformado o sistema. Sendo uma aproximacao
de segundo grau, o espaco usado é X? = {vh € C'%Q) . wlk, € Po(K;), VK; € Th}.
Usando uma base 9;(Z) con i = 1,2,...,n, do espago X7 com n, o ntimero de nés (ou
graus de liberdade pois coincidem nesse caso). Tendo posto ¥;(Z) = 37, ¢ (Z) onde ¢ ()
sao as fungoes lagrangeanas associadas ao i-ésimo né no e-ésimo elemento ao qual tal
né pertence. Em outras palavras, ¢;(Z) é a soma das fung¢des lagrangeanas as quais um
mesmo né é relacionado, veja a seguir a distribuigdo do nimero de fungdes de forma para

cada tipo de no:

quatro para noés no interior do dominio nos vértices dos elementos;
e duas para nos no interior do dominio e nas faces dos elementos;
e uma para nos no interior do dominio e interiores aos elementos;

e duas para nés no contorno do dominio e nos vértices dos elementos (excluidos os nés

de vértice de dominio);
e uma para nés no contorno do dominio e nas faces dos elementos;

e uma para nos nos vértices do dominio.

62 Capitulo 3. Materiais e métodos

—

Com essa notagao a aproximacao da temperatura pode ser escrita como 75 ((z)) =
> Ty (7).

Deixando por tltimo o contributo dos nés Dirichlet o sistema linear pode ser escrito

0
- e

como segue:
Ta

Ir,

Koo Kor,
Kr,o Kr,or,

Com:

Ko = Z/)V, 2).N;(r, 2)d(r)d(z) 65 =12, na (3.33a)

Nec

Kgr, = Z/ (r)rV(r, 2).V;(r,2)d(r)d(z) i=1,...,nq; j=nao+1,...,n,

K, =KP o (3.33¢)

Nec

Ki,r, = Z / r)rVYi(r,2).Vi(r,2)d(r)d(2) i, j=no+1,...,n, (3.33d)

Com n.. o0 nimero de elementos que os nés ¢ e j possuem em comum, ng O NUMEro
de nés internos ao dominio mais o nimero de nds presentes na fronteira de Neumann e n,,
o numero total de nés. Note que os iltimos n,, — ng sdo os nés que pertencem a fronteirade
Dirichlet.

O sistema linear pode portanto ser resolvido como na equacao 2.15 na pagina 33

em auséncia de vetor forcante.

3.1.3.2 Inclusdo do efeito térmico no problema axissimétrico

Uma vez resolvido o sistema de difusdo térmica e dispondo da distribuicdo de
temperatura no corpo, a expansao/contragao gerada pela variagao de temperatura local
produz, por sua vez, tensoes. Considerando nulas as autotensoes provenientes de processos
produtivos, a relagdo A.27 (lei de Hooke) na péagina 107 em presenga de efeitos aneldsticos

térmicos, ainda sob hipdtese de isotropia se escreve:

045 = 2,ueij + Aaijekk (334)

Com e;; = €; — 0;;aAT a parte elastica do tensor de Cauchy, a coeficiente de
expansao térmica e AT = T — T, com Ty uma temperatura de referéncia na qual as

deformagoes aneldsticas se anulam.

3.1. Andlise e formulagdo do problema 63

A relacao constitutiva final fica conforme a equacao 3.35:

045 = 2/~L€ij + 5@' [/\ekk - (2,u + 3/\)0&AT] (335)

Com o mesmo procedimento usado na formulacao variacional 2.4 mas usando a
nova relacao entre tensoes e deformagoes 3.34 aparece uma nova parcela a direita da

formulagao:

Encontrar 4(7) € Hy (Q;R?) tal que:

/ 20(r)E(@) : B(T) + A(r)Tr(E(@)Tr(E(7))] dQ =
|07+ 2u(r) + 3M)ATa(r)Tr(B@)| A + [padl (3.36)

'y

\

Vo € Hy (9 R3)

Note que Tr(E(@)) = div(w).

Com a axisimetria do problema e a solicitagao somente no plano meridional, pode-se
afirmar que as derivadas parciais em relacao a 6 sao nulas e que uy = 0. As equagoes de

congruéncia interna em coordenadas cilindricas se simplificam como segue:

€ = Ouy Yry = 8ur T Buz
r— or rz —
_10uy u7 Uy 13u7 aue Uy __ _ Ug __
€= 90 + —r Vo = o0 + ro T =0 <337)
o 10 8u
€z = 37227 Yo = augz + 9 =0,

Com essas podem ser definidos os extremos de integragao e a formulagao variacional

do problema especifico:

Encontrar 4(r, z) = (u,(r, 2),u.(r, 2)) € HE_ ([Ri, Re] % [0, L]; R?) tal que:

/L R.i2 (T)r{ﬁur v, . Uy Uy n ou, 0v, . (8% N (9uz> (avr N avz>}+
0 JR; K or Or rr 0z 0z 0z or)\ oz ' or

ou, u, Ouy\/Ov, v, Ov, B
+>\(r)r{<8r +7+ 8z>(87“ +7+ (%)}drdz_
L [Re
=[] 9o = o)t
0 R;
ov, v, Ou,

+(2u(r)+3A<r))m(7“>AT(“Z><a LR

(3.38)

)drdz—i—

L L
+/ Rz-pi(z).vrdz—/ Repe(z).v,.dz
0 0
Vi(r, z) = (vp,v.) € Hp ([Ri, Re] x [0, L]; R?),
Onde R; e R, sao os raios interno e externo, ps e p,,(r) sdo as densidades do

fluido movido (4gua) e do material (por isso a dependéncia em relagdo a r). Por tltimo

L é o comprimento do riser e g a aceleragao da gravidade. Note também a dependéncia

64 Capitulo 3. Materiais e métodos

dos parametros p, A e @ em relacdo a r e a dependéncia de p; e p. em relagdo a z. A

temperatura 1" é fornecida pela resolucao do sistema de difusao.

A essa altura é pertinente discutir as hipoteses adotadas e esclarecer alguns pontos:
na formulagao desenvolvida, alguns fendmenos foram desprezados como o efeito do fluxo
interno e outros nao incluidos pois ja estudados na etapa global como o carregamento
de correntes. Os efeitos do empuxo e do peso proprio foram incluidos na tltima equacao
somente para ilustrar como incluir carregamentos de volume porém na etapa de calculo
nao serao considerados pois ja abordados na etapa global. A tubulacao, nessa etapa é
considerada engastada em uma extremidade onde, portanto, ¢ usada condicao de contorno
de Dirichlet homogénea (i.é.: @ = 0 para z = 0) e livre para translacoes axiais na outra

(por isso nao aparecem forgastes de superficie para o extremo superior).

Sob as observagoes anteriores a equacgao 3.38 é pronta para a fase de discretizacao
através do método de Galerkin descrito na secao 2.2.2. O procedimento é analogo ao
utilizado no desenvolvimento do problema da difusdo de temperatura mas com o espago
funcional bidimensional Vj, = X? x X7 = {[vr,vz] € C' Q) xC°%Q) : v,
Py(K;), VK; € Ty},

Omitindo o procedimento formal (suficientemente tedioso dada a complexidade de

notagao e do termo a esquerda da 3.38) se observa que o sistema final serd do tipo:

Kgg Kgs‘{ KQFD KQFD [79 ﬁ slzj
KVU KVV KQFD KQFD 17(2 _ -E?{ (339)
KFDQ KFDQ KFDFD KFDFD UFD FI[‘JD
KFDQ KFDQ KFgFD K‘F/XFD VFD ﬁer

Tendo posto U como vetor de incégnitas de u,. e V vetor de incégnitas de u,.

o OY; Oy 3¢‘3¢i}
UUjgj J J J
Kag _;/EQMT)T{ ar Or * 72 * 0z 0z *

(3.40)
+ A {87“] or +7J87" + 87“] r -+ 7]“2 } (r)d(z)
Com 1,7 =1,...,nq e ng o nimero de nds internos mais o nimero de nés sobre o
contorno de Neumann.
R . OY; 0 Oy Oy Oy wz}
UV J_ j j J
Z/ { or 0z } +)\<T)T{ 0z Or * 0z r (r)d(2) (3-41)
Comi,7=1,...,nq.
TR O Oy O 5%’} {8@/)' 5%’}
VV J _ J J Ui
Z/ 2u(r { 0z 0z * or Or A 0z 0z d(r)d(z) (342)

Comi,j=1,... ng.

3.2. Os instrumentos utilizados 65

As componentes da matriz KggD, Kg};, KKKD, KgXFD, K?gFD e K¥L‘)/FD possuem
expressoes similares as ja obtidas (KgFUD similar a K85, Kg}/D similar a K e assim
por diante) mas com os indices i e j percorrendo 1,...,ng ou ng + 1,...,n, dependendo
se correspondem a funcoes de nés de Dirichlet ou nao. Para as restantes componentes

observa-se que a matriz é simétrica.

FUi = n; [, @) + 3)ra(m AT, z){%@fﬂ" + @ff}d(r)d(zw -
L b2 (2)
Comi=1,...,n0, p(Ri2) = pi(2) € p(Re, 2) = —pal2).
Y — nz_; [@u(r) + 3\ ra(n AT z>{%‘f}+ o1

+gr(ps — pm(r))Pid(r)d(z)

Comi=1,...,nq.

Ainda uma vez observa-se que as parcelas FgD e F‘F/D sdo iguais as anteriores

mudando somente o caminho dos indicest=1,...,ngat=nqg+1,...,n,.

No apéndice A na pagina 1 sao presentes os codigos onde pode-se observar os

detalhes implementativos.

3.2 Os instrumentos utilizados

Com o avango tecnologico no ramo da projetagao de softwares, um fendmeno
recorrente € o da automatizagao de procedimentos de calculo e avaliacdo numérica de
problemas complexos. Esse fendmeno gera, por um lado, uma acessibilidade maior a
procedimentos de calculo numérico e um maior dinamismo na formulagao de tais problemas.
Por outro lado, aumenta a tendéncia a erros por auséncia de conhecimento do usuéario
em relacao aos algoritmos utilizados na resolucao. Muitas vezes softwares com interfaces
graficas muito desenvolvidas simplificam a fase de configuragao omitindo grande parte
dos parametros sobre os quais é possivel agir. Por mais robustos que sejam os métodos,
a analise numérica de problemas complexos nao pode ser resumida a simples etapas de
configuragoes pois com o tempo o analista se distancia dos potenciais pontos criticos
de uma simulagao numérica e do modelo que estd por traz da implementacdo. Ainda
mais delicado sao os casos nos quais sao presentes nao-linearidades pois tornam quase

impossiveis automatizagoes confiaveis e eficientes.

Evidentemente a direcao contraria também oferece riscos ja que seria initil a cada
novo problema reiniciar desde a implementacao da resolucao de sistemas lineares quando

ja existem implementacoes com pouca margem para melhorias. Nesse sentido, a etapa

66 Capitulo 3. Materiais e métodos

numérica do presente texto sera conduzida em linguagem C++ com auxilio da biblioteca

de elementos finitos libmesh.

3.2.1 A linguagem C++ e a biblioteca libmesh

A linguagem C++ é uma das mais utilizadas na atualidade em problemas do
célculo cientifico pois combina a versatilidade da programacao orientada a objetos (Object-
oriented programming) com a eficiéncia de uma linguagem de baixo nivel®. A prépria
biblioteca libmesh é um 6timo exemplo do potencial da linguagem C++ pois permite,
através de polimorfismos, herancas e outros instrumentos intrinsecos da linguagem, uma
grande abstracao e ligacao entre conceitos. Veja a figura 9 que mostra a popularidade
da linguagem no ambito da programacao. Sem duvidas essa popularidade, aumenta se se
considera o ambito do calculo cientifico. Outras linguagens populares no calculo cientifico
sao: Python, Fortran, C e MATLAB.

Finalmente, o fato de ser uma linguagem compilada torna o C++ mais eficiente que
linguagens interpretadas como por exemplo MATLAB e Python. Para o leitor interessado
na linguagem C++ veja (CPLUSPLUS..., 2014) e (PRATA, 2012).

A libmesh é uma biblioteca escrita em C++ onde é implementada uma estrutura
sélida para o utilizo do método dos elementos finitos. Essa biblioteca possui dentre seus

principais instrumentos:

e (Classes e métodos para a geracao e leitura em varios formatos de malhas computaci-

onais (Mesh generation);
e Classes e métodos para integragdo numérica/quadraturas;

e Estrutura organizada para a aplicacao do método dos elementos finitos em diversos

problemas no ambito das equacgoes diferenciais parciais;

e Compatibilidade com os melhores pacotes para solucao de sistemas lineares, como

por exemplo PETScS.

e Capacidade de execucao de cédigo em paralelo, principalmente através MPI.

A organizacao da implementacao cabe ao projetista que deve selecionar os minimos
detalhes do método: desde o tipo de elemento e da dimensao da malha até os métodos de

integracao numérica e de resolucao de sistemas lineares. Além disso, o usuario também

> O nivel de uma linguagem é uma escala ficticia que mede a distancia da linguagem em relacio a

linguagem das méquinas e em relagdo a linguagem humana. A linguagem é de baixo nivel se é préxima
a linguagem das maquinas e de alto nivel se é préxima a linguagem humana.
Para informagao veja (PETSC..., 2014).

T MPI - Message Passing Interface. Para mais informagdes veja (OPEN.. ., 2014).

3.2. Os instrumentos utilizados 67

ActiveVFP

0.20 0.40 0.60 0.80 1.00

Figura 9: Popularidade linguagens de programacao - 2013

Fonte: LangPop.com (2014, http://langpop.com)

¢é responsavel por gerir a construcao dos sistemas lineares e para problemas nao lineares

definir o loop do método de resolucao.

Libmesh é construida com uma concepcao de colaboracao com outros softwares
e bibliotecas sendo que é capaz de fruir de softwares terceiros com altas prestacoes e de
prover outputs nos mais variados formatos para a etapa de post processing. Por tltimo,
é presente um suporte extensivo para refinamento adaptativo de malha (adaptive mesh
refinement ou AMR) para plataformas seriais ou paralelas. Para detalhes e informagoes
sobre a biblioteca libmesh veja (DEVELOPERS, 2014) e para uma introducao geral veja
(VIEIRA, 2009).

3.2.2 O método de refinamento cooperativo

O problema global possui uma série de dificuldades de implementacao. Dentre as

principais pode-se destacar:

i Necessidade de aproximacao inicial relativamente préxima a aproximacao final para

convergéncia do método de Newton (principalmente para o método misto);

ii Nao-linearidades muito dependentes da escala e malha adotadas (scale-dependent

68 Capitulo 3. Materiais e métodos

nonlinearities);
iii Sistemas lineares mal condicionados;

iv Imprecisoes e instabilidade no calculo das tragoes para o método classico;

As dificuldades encontradas fizeram da analise numérica uma etapa delicada e dificil
porém gracas ao longo tempo de estudo foi possivel descobrir como os métodos classico
e misto podem ser usados de maneira cooperativa combinando suas vantagens: maior

8

eficiéncia e capacidade de convergéncia do método classico® e melhor previsao das tracgoes

equivalentes pelo método misto sao algumas das vantagens que podem ser combinadas.

Antes de tudo cabe notar que o método misto precisa ser inicializado em desloca-
mentos e em tracgoes e ¢ mais dificil intuir a priori o comportamento da distribuicao de
tragoes em relagdo ao campo de deslocamentos. Esse fato dificulta a utilizacdo do método

misto visto que esse converge somente para inicializagoes muito préximas a solucao final.

Ambos os métodos classico e misto possuem probleméticas no refinamento de
malha pois as nao-linearidades do problema se amplificam conforme aumentam os graus
de liberdade gerando, em tltima andlise, sistemas lineares mal condicionados e divergéncia

para malhas pouco finas.

Para responder as dificuldades mencionadas, foi usado um procedimento de resolugao
alternada entre os métodos classico e misto que associa em modo 6timo as caracteristicas

de ambos os métodos. A seguir é exposto o procedimento:

Proposicao 3.1 (Refinamento de malha combinado). Antes de tudo se resolve o pro-
blema com o método cldissico usando uma malha pouco refinada em modo a evitar as
instabilidades que dertvam das nao-linearidades e a obter uma aprorimacdao inicial para a
distribuicao de tragoes que possa inicializar o método misto. Em sequida se usa o método
misto com uma malha mais refinada obtendo uma aprorimacdo melhor para tracoes e
deslocamentos. Voltando ao método classico é possivel usar malhas ainda mais finas dada

a maior proximidade da solugdo inicial a solugdo final.

Continuando esse procedimento € possivel evitar instabilidades para as tracoes no

método classico e divergéncia para o método misto.

Na figura 10 na pagina 69 pode-se observar o procedimento de refinamento de
malha combinado. E interessante notar como os deslocamentos convergem rapidamente
enquanto as tragoes apresentam instabilidades para malhas muito refinadas para o método

classico.

8 Com aproximacdes iniciais equivalentes o método cléssico converge para casos que o método misto

nao converge.

3.2. Os instrumentos utilizados 69

Perfil do riser no procedimento de refinamento de malha

1600 T T T T T T T
40 elementos-cldssico-2" ordem ———
80 elementos-misto-2* ordem ————
1400 - 100 elementos-cldssico-2* ordem ——— 7]
150 elementos-misto-2* ordem ————
1200 |- 120 elementos—cldssico-2* ordem .
1000 elementos-cldssico-1* ordem
1000 B
800 B
E
E
600 4
400 B
200 B
0 4
2200 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
x[m]
(a) Perfis no procedimento de refinamento de malha combinado.
Tragao do riser no procedimento de refinamento de malha
7000 T T T T T T T
40 elementos-cldssico-2* ordem ———
80 elementos-misto-2* ordem ————
6000 |- 100 elementos-cldssico-2* ordem ——— i
150 elementos-misto-2* ordem ————
120 elementos—cldssico-2" ordem
5000 1000 elementos-cldssico-1* ordem ———
4000
z
=
=
3000
2000
1000
0 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600
s[m]

(b) Tragoes no procedimento de refinamento de malha combinado.

Figura 10: Procedimento de refinamento de malha combinado.

Fisicamente, os perfis possuem curvaturas ligeiramente superiores ao perfil parabé-

lico que é usado como inicializador do método.

70 Capitulo 3. Materiais e métodos

3.2.3 Complexidade e eficiéncia do cédigo para o problema axissimétrico

Uma analise sobre a complexidade dessa porc¢ao do codigo foi feita pelo seu maior
custo computacional em relacdo ao problema global. Apesar do problema global ser nao
linear e portanto incorrer em iniimeras solugoes de sistemas lineares, o fato de possuir um
dominio 1D ([0, L]) garante que a cada passo o sistema linear relacionado seja pequeno em

relagao a dimensao do sistema linear do problema axissimétrico (possui um dominio 2D).

Para analisar a complexidade e a eficiéncia do algoritmo, foi usada uma abordagem
empirica com auxilio da wtility PerfLog que gere a medi¢cao do tempo de execucao de
porgoes de codigo oportunamente selecionadas. Dessa maneira é possivel identificar gargalos
do algoritmo, isto é, as porcoes que apresentam maior complexidade numérica’ e portanto

que representam os pontos criticos no procedimento de refinamento de malha.

Como esperado, a parte critica do cddigo é a resolucao dos sistemas lineares dos
problemas implicitos sendo que o problema da elasticidade é responsével por ao menos 90%
do custo computacional (propor¢ao que aumenta com o aumento de graus de liberdade).
Na tabela 1 sao apresentados os tempos de execucao da solucao dos sistemas implicitos

(difusao e elasticidade) e explicito (cdlculo das tensdes) para diversas malhas.

Tabela 1: Tempo de execugao para diversas malhas

‘ malha: 5n x 10n ‘nzl‘an‘n:Zl‘ n==_, ‘n:16‘ n =32 ‘
tempo Total [s]: 0.0405 | 0.4891 | 2.6789 | 14.4052 | 61.5752 | 282.5269
% tempo resolucao elasticidade: | 88.18 | 96.44 | 97.21 97.06 93.46 88,15
% tempo resolucao difudo: 6.39 1.64 1.55 1.97 5.62 11.08
% tempo resolucao tensoes: 5.43 1.92 1.25 0.97 0.92 0.77

Com esses dados pode-se prever a complexidade do algoritmo: considerando que

a relagao de proporc¢ao entre tempo de execucgao t e parametro da malha n seja do tipo

ti

_ log(+)

— a i—1
t = kn®, a fracao Toa ()
t.

n’?jl = 2 para todo 7 tem-se que a = logQ(t_jl). Usando a tabela 1 pode-se

notar que o expoente é préximo a 2. Eventuais imprecisoes sao devidas a capacidade de

(sendo i o nimero da simulagao) se aproxima de a com o aumento

de n. Como

processamento instantanea da maquina que ¢é variavel e ao fato que o modelo de proporgao
nao é perfeito visto que pode conter outros termos menos importantes como na seguinte
relacdo: t = kyn® + kon® + .. .

Com o método descrito, o expoente que se distingue é o mais alto e mais importante.
Dessa forma pode-se extrapolar o tempo requerido para simula¢ées com mais graus de

liberdade usando o parametro de malha n correspondente, o coeficiénte a obtido e uma

9 A complexidade numérica é a relacdo de proporcionalidade entre uma dimensdo caracteristica do

INPUT do problema e o tempo de execugdo. As constantes sdo desprezadas pois s@o dependentes da
méquina e/ou arquitetura no entanto é interessante entender como o aumento de uma dimensao de
INPUT altera o tempo de execugao de um programa.

3.2. Os instrumentos utilizados 71

constante k que é normalmente dependente da maquina em questao mas que pode-se obter

facilmente com uma das simulagoes ja efetuadas.

Por exemplo, uma simulagdo com uma malha de 200x1000 (200000 elementos)
seria equivalente (em nimero de elementos) a uma malha com n = 64. Usando um
expoente ligeiramente maior que 2 para incluir efeitos dos termos nao modelados e usando
a constante de proporcionalidade obtida para n = 32 que vale k = %i‘? ~ 0.195, o tempo

necessario seria de t,—¢s ~ 0.195 x 64>! ~ 1211.22 s ~ 20 min.

73

4 Resultados

Para a andlise do problema, pretende-se sobrepor os efeitos da andlise global,
que derivam exclusivamente das correntes maritimas e do peso préprio, e os da anélise
axissimétrica, que derivam das pressoes e das variacoes de temperatura. Nesse sentido, a
partir da distribuicao de esfor¢o normal que se obtém na andlise global, pode-se chegar,
com algumas hipoteses, as tensoes normais na secao transversal. Dessa maneira, pode-se
sobrepor essa tensao normal ao estado de esfor¢o que se obtém no problema axissimétrico

de modo a entender o estado de esfor¢o geral.

A rigor, a hipdtese de sobreposicao dos efeitos nao é valida para problemas nao
lineares como no caso da andlise global, no entanto com consideragoes fisicas pode-se intuir
que as nao linearidades do problema global incidem muito pouco no problema local e,

viceversa, o problema axissimétrico praticamente nao contribui ao problema global.

4.1 Resultados do problema global

Nesta secao pretende-se discutir os resultados obtidos na analise global do problema
estatico da catenaria exposto no capitulo 3.1. O estudo estatico foi considerado pela
preocupacao predominante quanto aos esforcos aos quais a estrutura deve resistir e nao
quanto a forma exata que estrutura a assume num cendrio tempo-dependente. Além do
mais, as possiveis variagoes de corrente em um cenario nao estacionario sao intimeras e
no trabalho presa-se por uma abordagem concisa e pratica no procedimento de avaliacao
dos esforgos resultantes e na compreensao da ordem de grandeza dos diversos fenémenos

envolvidos, a qual ndo muda para eventuais cenarios dinamicos.

No projeto, duas abordagens diferentes foram consideradas conforme apresentado

na sec¢ao 3.1.1 do capitulo 3.1 e ambas demonstraram coeréncia e eficiéncia.

Os dados fisicos utilizados no problema, em geral, sdo expostos na tabela 2. As
analises foram feitas variando esses parametros para o entendimento do comportamento
da estrutura e para verificar se o modelo responde de acordo com o esperado. Em seguida

considera-se a resposta do modelo a variacao de um parametro por vez.

Os comentarios e resultados foram feitos em relagdo a andlises com parametros
numéricos gerais apresentados na tabela 3 e usando o método de refinamento de malha

cooperativo mencionado na secao 3.2.2 na pagina 67.

74 Capitulo 4. Resultados

Tabela 2: Dados do problema global

Comprimento indeformado do cabo (L) - [m]: 1600
Profundidade (H) - [m]: 1500
Rigidez axial do cabo (EA) - [N]: 11.3 x 10°

Peso imerso do cabo (g) - [X]: -4012

Velocidade de corrente (V;) - [Z]: 1.5

Perfil da corrente (f(y)) - adimensional: 1
Coeficiente de arrasto (drag) cabo (¢4) - adimensional: 0.47
Densidade da dgua (p,) [2%]: 1000

Diametro do riser (D) [m]: 0.6

Tabela 3: Dados numéricos do problema global

Parametros Método classico Método hibrido

Numero de elementos: 100 150

Ordem de aproximacao: 22 2%
Nuimero de nés da malha: 201 201

Graus de liberdade implicitos: 401 603

Graus de liberdade explicitos: 201 0
Méximo n° de iteragoes (sistema linear): 1000 1000
Méaximo n° de iteragoes (Newton): 150 150
Tolerancia (sistema linear): 10710 10710

Tolerancia (Newton) em norma L?: 1 10

4.1.1 Variacao do comprimento

A figura 11 na pagina 75 apresenta a resposta do modelo com os dados das tabelas

2 e 3 ao variar do comprimento da tubulacao para os dois métodos utilizados.

E possivel perceber que ambos os métodos conseguem colher o efeito do aumento
de comprimento. Os gréaficos confirmam a validade dos modelos pois ambos os métodos

convergem precisamente a mesma solugao.

Usando essa abordagem ¢ possivel impor a condi¢ao de contorno de contato variando
o comprimento da tubulac¢ao até obter aquele que prevé curvatura nula na origem (note
como o comprimento de 1600 aproxima bem essa condigao). Esse método iterativo foi
sugerido por exemplo em (PESCE; MARTINS; CHAKRABARTI, 2005).

Quanto as tragoes resultantes, a figuras 12 na pagina 76 fornece a relagao entre
aumento de comprimento e tragoes. Note que com o aumento de comprimento, como
para uma catendaria pendurada, o cabo tende a assumir uma configuracao que apresenta
valores negativos para ordenada. Fisicamente, esses casos nao podem ser verificados pois
foi assumido que o o ponto (y = 0) corresponde ao fundo do oceano. Se, no entanto, y = 0

fosse uma bodia, a configuragao teria sentido.

4.1. Resultados do problema global 75

Perfil para diferentes comprimentos de riser - Método cldssico

1600 ‘ ‘
1520m ——

1400

1200

1000

800

g
-
600 <
400 —
200 —
0 i
=200 Il Il Il Il Il Il Il Il
0 50 100 150 200 250 300 350 400 450
x[m]
(a) Perfil do riser para diversos comprimentos com método cléssico.
Perfil para diferentes comprimentos de riser - Método misto
1600 :
1520 m —
1400 —
1200 E
1000 <
800 —
£
-

600

400

200

0 50 100 150 200 250 300 350 400 450

x[m]

(b) Perfil do riser para diversos comprimentos com método mixed.

Figura 11: Perfil do riser para diversos comprimentos

Da analise do grafico percebe-se que, como era de se esperar, o método misto é
mais robusto e eficiente na previsao das tragoes. Para o método classico o aumento do
comprimento implica uma réapida flutuacao das tragoes que provem do célculo explicito
das mesmas (no calculo explicito flutuages locais podem ser facilmente amplificadas em

operagoes de derivagao).

Outra importante conclusao é que as condic¢oes de contorno do problema incidem

76 Capitulo 4. Resultados

Tragdo para diferentes comprimentos de riser - Método cldssico

7000

6000

5000

4000

T[kN]

3000

2000

1000

0 I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800

s[m]

(a) Tragao no riser para diversos comprimentos com método cldssico.

Tragéo para diferentes comprimentos de riser - Método misto

7000

1520 m

6000

5000

4000

T[kN]

3000

2000

1000

0 ! ! ! ! ! ! ! !
0 200 400 600 800 1000 1200 1400 1600 1800

s[m]

(b) Tragao no riser para diversos comprimentos com método misto.

Figura 12: Tragao no riser para diversos comprimentos.

de modo decisivo nas tragoes resultantes ja que, nesse intervalo de variacao de compri-
mento, apesar da maior magnitude global do peso préprio da estrutura, um aumento no
comprimento acarreta diminuicao das tracoes globais do sistema. Um olhar macroscépico
permite entender esse fato: um comprimento maior, permite a estrutura de se posicionar
em maneira “mais paralela” a corrente por uma maior amplitude de profundidade gerando

um carregamento equivalente, devido a corrente, menor.

4.1. Resultados do problema global 7

4.1.2 Variacao da magnitude de corrente

As figuras 13 na pagina 77 apresentam os resultados da resposta estrutural ao variar
da magnitude de corrente. Os parametros das simulagoes sdo encontrados nas tabelas 2 e
3.

Perfil para diversos valores de magnitude de corrente - Método cldssico

1600 : : :
0.75 m/s
1.0 m/s ‘
1400 |- 1.25 m/s }‘]
1.5 m/s |
1200 |- 1.75m/s [

20m/s

1000

800

ylm]

600

400

200

0 50 100 150 200 250 300 350 400

x[m]

(a) Perfil do riser para diversos valores de magnitude de corrente com método

.
classico.
Perfil para diversos valores de magnitude de corrente - Método misto
1600 : : : :
0.75 m/s
1.0 m/s
1400 1= 1 o5 s 7]
1.5 m/s
1200 |- 1.75m/s |

20 m/s

1000

800

y[m]

600

400

200

0 50 100 150 200 250 300 350 400

x[m]

(b) Perfil do riser para diversos valores de magnitude de corrente com método
misto.

Figura 13: Perfil do riser para diversas magnitudes de corrente.

Dos gréficos pode-se notar a mesma tendéncia vista no caso da variagdo de compri-

78 Capitulo 4. Resultados

mentos onde os modelos concordam amplamente na previsao do resultado. Note que, para
os casos expostos, uma corrente de 0.757 ainda nao ¢ suficientemente forte para garantir
que todo o riser esteja acima de y = 0, situagdo que nao é permitida fisicamente ja que no

modelo em questao o ponto y = 0 é o solo.

Quanto as tragoes pode-se verificar como o aumento de corrente tensiona progressi-
vamente o cabo implicando em maiores diferencas de tragdes na parte inferior do riser.
Note que uma corrente de 0.5 ja ¢é suficiente para que o cabo nao esteja completamente
tensionado, situacao que o modelo desenvolvido nao colhe mas sugere gragas a uma analise

assintétical. Veja a figura 14 na pagina 79 & esse respeito.

Cabe ressaltar que o modelo misto é mais estavel quanto as tragoes e menos
estavel quanto aos deslocamentos, situagao que, além de ser prevista pela teoria, pode ser

observada para todos os casos de estudo comparativo feitos.

4.1.3 Variacao da magnitude do peso imerso

A figura 15 na péagina 80 ilustra o efeito do aumento de peso imerso da estrutura.

Mais uma vez, os restantes parametros das simulagoes sao encontrados nas tabelas 2 e 3.

E possivel perceber que o aumento de peso imerso incorre num abaixamento da
porcao inicial de cabo e em tltima andlise na aproximacao horizontal da FPU em relacao
ao TDP. Essa aproximacao sugere que as deformagoes do cabo sao de pequena magnitude
j& que nao suficientes a compensar esse efeito. Nas figuras 16 na pagina 81 sdo expostos os

resultados das tragoes ao variar dos valores de peso imerso do riser.

O aumento de peso préprio imerso incorre num aumento das tragoes que se verificam
ao longo do cabo. Esse é um fendmeno congruo com o que se intui porém pode-se notar
que além disso o modelo prevé uma curva de tragdes que cresce mais rapidamente para
pesos maiores. Essa tultima constatagao pode ser intuida pelo fato que o peso imerso é
distribuido e portanto cada secao subsequente deve suportar um peso sempre maior que é

integrado ao longo do comprimento do cabo.

4.1.4 Importancia relativa das variacoes

Além das analises ja conduzidas também foi feito um estudo variando a rigidez
axial do cabo. Essa etapa nao foi digna de uma secao pois os efeitos macroscépicos da
resposta sao minoritarios se comparados aqueles das variagoes dos restantes fatores. Essa

relativa pouca importancia tem como causa a pequena deformabilidade do cabo para

1 Diminuindo gradualmente a corrente os valores de tracdo se aproximam do valor nulo na porcao inicial

da tubulacdo, diminuindo ulteriormente os calculos se tornam instaveis e nao se verifica convergéncia
pois o modelo introduzido da catendria nao prevé compressoes.

4.1. Resultados do problema global 79

Tragdo para diversos valores de magnitude de corrente - Método cldssico

7000

0.75 m/s ‘
1.0 m/s
125 m/s
1.5 m/s
1.75 m/s
2.0 m/s

6000

5000

4000

T[kN]

3000

2000

1000

0 I I I I I I I
0 200 400 600 800 1000 1200 1400 1600

s[m]

(a) Tragdo no riser para diversos valores de magnitude de corrente com método
cléssico.

Tragao para diversos valores de magnitude de corrente - Método misto

7000

T
0.75 m/s
1.0 m/s
6000 L 1:25m/s // g
1.5 m/s
1.75 m/s

20 m/s

5000

4000

T[kN]

3000

2000

1000

0 I I I I I I I
0 200 400 600 800 1000 1200 1400 1600

s[m]
(b) Tragdo no riser para diversos valores de magnitude de corrente com método

misto.

Figura 14: Tragao no riser para diversas magnitudes de corrente.

valores de rigidez axial até 70% inferiores ao utilizado. Dessa maneira nao ocorre uma

redistribuicao dos deslocamentos ou uma mudanca nas tragoes relevantes na resposta.

Com as analises feitas foi possivel notar a maior sensibilidade das tragoes resultantes
em relacdo a variagoes de corrente na parte inferior do cabo e em relagdo a variagoes de peso

imerso na parte superior. O fato que na parte inicial de cabo as tragoes possuem direc¢ao

80 Capitulo 4. Resultados

Perfil do riser para diversos valores de peso proprio - Método cldssico

1600

300 kg/m —
350 kg/m ———
400 kg/m ——
450 kg/m ——
1200 |- 500 kg/m

1400

1000

800

ylm]

600

400

200

-200 1 1 1 1 I I

Xx[m]

(a) Perfil do riser para diversos valores de peso imerso com método classico.

Perfil do riser para diversos valores de peso préprio - Método misto

1600

300 kg/m ———
350 kg/m ——
400 kg/m ———
450 kg/m ———
1200 |- 500 kg/m

1400

1000

y[m]

200

-200 1 1 1 1 I I

x[m]

(b) Perfil do riser para diversos valores de peso imerso com método misto.

Figura 15: Perfil do riser para diversos valores de peso imerso.

horizontal e na parte superior direcao vertical ajuda a entender esse comportamento.

A variagdo de peso também contribui de modo relevante as distribuicoes de tragao
resultantes mudando nao somente as magnitudes em questao mas também as relativas

taxas de crescimento.

As variacoes de comprimento do cabo se demonstraram menos relevantes na

distribuicao de tracao resultante porém essas variagoes se traduziram em mudancas

4.1. Resultados do problema global

81

8000

7000

6000

5000

4000

T[kN]

3000

2000

1000

Tragao no riser para diversos valores de peso préprio - Método cldssico

300 kg/m ——
350 kg/m ———
400 kg/m —— -
450 kg/m
500 kg/m

200 400 600 800 1000 1200 1400 1600

s[m]

(a) Tracdo no riser para diversos valores de peso imerso com método cléssico.

8000

7000

6000

5000

4000

T[KN]

3000

2000

1000

Tragao no riser para diversos valores de peso proprio - Método misto

300 kg/m ———
350 kg/m ——

400 kg/m ———
450 kg/m ———
500 kg/m

200 400 600 800 1000 1200 1400 1600

s[m]

(b) Tracao no riser para diversos valores de peso imerso com método misto.

Figura 16: Tracao no riser para diversos valores de peso imerso.

substanciais no perfil resultante. A variacao de comprimento, como dito, é uma etapa

importante nao somente na determinacao da sensibilidade do modelo a esse parametro

mas também na imposicao iterativa da condicao de contorno de tipo contato que ocorre

no TDP.

82 Capitulo 4. Resultados

4.2 Resultados do problema axissimétrico

Nesta secao serao descritos os resultados da parcela axissimétrica do problema,
por isso uma descricao local foi feita de modo que somente uma por¢ao pequena do
comprimento da tubulagao foi levada em consideracao, porcao colocada em condi¢oes de
trabalho limitrofes, i.6. como se fosse a parte mais profunda da tubulacao, submetida a
pressOes internas e externas equivalentes as experimentadas na parte inicial do riser (perto
do TDP). As condigbes de contorno utilizadas para isolar os fenémenos axissimétricos dos
restantes estudados na etapa global foram a de engasgamento na extremidade inferior
e livre expansao axial na extremidade superior. Essa escolha foi feita para evitar que
expansoes/contragoes axiais associadas as condigoes de contorno nao condicionem o estado

de esforco final?. Os codigos completos se encontram no apéndice A na pagina 1.

4.2.1 Resultados do problema de difusao de temperatura

Como dito anteriormente, a difusao de temperatura pode ser modelada como um
problema 1D simples pois, com a hipdtese de isolamento perfeito, o inico “carregamento”
que é dependente de z é a temperatura externa. Essa temperatura apresenta gradientes na
direcdo z nao superiores a 0.1% como pode ser observado na figura 8. Comparando esses
valores com os gradientes experimentados na diregao radial (que sdo da ordem de 500;—0)

pode-se concluir a baixa relevancia desse efeito, que portanto pode ser desprezado.

As informagoes usadas na simulagao se encontram na tabela 4:

Tabela 4: Dados de difusdo térmica

Raio interno (R;) - [m]: 0.12
Raio externo (R.) - [m]: 0.3
Espessura tubo interno (¢;) - [m]: 0.02
Espessura tubo externo (t.) - [m]: 0.018
Comprimento tubulagao (L) - [m]: 5
Coeficiente de condugao térmica (k) tubos interno e externo - [%} 50
Coeficiente de condugao térmica (k) isolante - [%} 0.16
Temperatura interna [°C]: 95
Temperatura externa 1D [°C]: 10
Temperatura externa 2D e z € [0, L] em metros [°C]: 1040.1z

A simulagao 1D fornece a distribuicao de temperatura radial vista na figura 17
na pagina 83, simulag¢ao conduzida com uma malha de 200 elementos e aproximacao de

segunda ordem.

2 Se por exemplo as duas extremidades fossem consideradas engastadas, eventuais expansdes/contracoes

seriam impedidas por essas condi¢bes podendo gerar contributos de tensao axial o, exagerados e nao
relacionados aos esforcos axissimétricos mas sim as proprias condi¢bes de contorno.

4.2. Resultados do problema azissimétrico 83

100 T T T T T T T T e T T e T T T T T T T e T T T T T o T T T T T T T I oo
T

0.12 0.14 0.16 0.18 02 0.22 0.24 0.26 0.28 03

X

Figura 17: Distribui¢do de temperatura radial: malha de 200 elementos e aproximacao de
segunda ordem.

A evolugao logaritmica concorda com o previsto pela solugao analitica, veja (IN-
CROPERA et al., 2012). Por escriipulo é exposto o resultado da simulacao em 2D na
figura 18 que confirma a validade do modelo 1D dada a pequena variagdo da temperatura

externa na dire¢do axial.

" MHHW"V'HHHM'HH\

Figura 18: Distribuicao de temperatura 2D: malha de 150x500 elementos e aproximacao
de segunda ordem.

Note como o perfil em direcao radial segue o mesmo esquema da distribuicao em
1D.

84 Capitulo 4. Resultados

4.2.2 Analise estrutural em auséncia do efeito térmico

Na analise estrutural em auséncia do efeito térmico, a formulacao variacional é
dada pela equacao 3.38 na pagina 63 sem os termos a direita correspondentes a variagao
de temperatura e aos carregamentos de volume provenientes do peso imerso. A tabela
5 apresenta os principais parametros para o calculo utilizados, esses sdo frutos de uma
pesquisa dos valores realmente encontrados nas condigdes de trabalho da estrutura. A
pressao externa ¢ dada pela pressao hidrostatica da dgua partindo de uma profundidade
de 1500 metros e chegando a 1495 metros. A pressao interna é aproximadamente a pressao
necessaria, nos 5 primeiros metros, para a propulsao a 2.5 do dleo cru partindo de uma
profundidade de 1500 metros e chegando a superficie da 4gua num eventual cenario de
inicio de operacao®. O gradiente de pressao considera o efeito hidrostatico e de perda de

carga no fluxo.

A extremidade inferior da tubulacao foi considerada engastada e a extremidade
superior livre para translagoes axiais, dessa maneira é possivel isolar os efeitos que decorrem

exclusivamente dos fendmenos axissimétricos.

Tabela 5: Dados para o calculo estrutural

Médulo de Young (E) tubos interno e externo - [GPal: 200
Médulo de Young (F) material isolante - [G Pal: 5
Coeficiente de Poisson (v) tubos interno e externo - adimensional: 0.3
Coeficiente de Poisson (r) material isolante - adimensional: 0.4
Pressao interna (p;) [M Pa) e z € [0, L] em metros: 52 - 0.0104z
Pressao externa (p.) [M Pal] e z € [0, L] em metros: 15 - 0.01z
Densidade (p,,) tubos interno e externo - % ; 8000
Densidade (p,,) material isolante - L’:L% : 1300
Densidade (pf) dgua - [:193 : 1000
Aceleragao da gravidade (g) ;’4 10

Na fase numérica pode-se notar que a malha 2D é muito mais sensivel a refinamento
na direcao radial que em direcao axial. Essa observacao é coerente com as expectativas
vistos os grandes gradientes de esforcos e de propriedades dos materiais experimentados

na direcao radial em relagao a direcao axial.

As imagens reproduzem a soluc¢ao do problema para uma malha uniformemente

distribuida pelo dominio que possui caracteristicas conforme apresentado na tabela 6*.

Para maiores informagoes veja (JAN et al., 2010)

Essas caracteristicas se referem somente & parte implicita do problema, i.é. o problema nas deflexoes
que deriva da formulagao variacional através do método de Galerkin. As informacoes referentes a parte
explicita (i.é. cdlculo das tensdes) sdo omitidas j& que essa etapa é muito menos onerosa.

4

4.2. Resultados do problema azissimétrico 85

Tabela 6: Dados da malha para a simulagao sem efeitos térmicos

Nimero de nés: 641601
Numero de elementos: 160000
Ordem de aproximacao: 2
Tipo de elemento: quadrilatero
Nimero de graus de liberdade (dimensao do sistema linear): 1283202
Numero de graus de liberdade na fronteira de Dirichlet: 1602

As deflexoes na condicao de trabalho imposta sao congruas com a hipotese de

du,
)

) por todo o

pequenas deformagoes. A componente radial do gradiente de deslocamento radial (

duz

0z
dominio e ambas sao muito superiores a componente axial do gradiente de deslocamento

é superior a componente axial do gradiente de deslocamento axial (

radial (%f) e a componente radial do gradiente de deslocamento axial (aa“;). Além disso,
a deformagao axial do cabo é praticamente constante radialmente e axialmente, com
excecao a extremidade engastada onde se verificam variagoes axiais de deformagao. Como
mencionado, os efeitos do engastamento sao confinados as proximidades da extremidade
sendo que nao geram grandes gradientes em relagdo aqueles ja presentes em zonas distantes.

Veja a figura 19 na pagina 86 e a figura 20 na pagina 87.
As unidades de medida, se omitidas, sdo expostas em SI.

Mais interessante que o campo de deflexdes para o estudo estrutural é o estado de
tensoes, que, dada a hipdtese de axissimetria, é descrito completamente pelas componentes

(0,0, Trz, 0g]. Essas podem ser obtidas facilmente através da seguinte equacao constitutiva:

o, A+ 2u A 0 A €r
- A A+2u 0 A .
o _ + 20 € (4.1)
Trs 0 0 L 0 Yz
o] A A 0 A + 2,& €g

Sendo o vetor das deformacoes relacionado as deflexdes conforme a equagao 3.37

na pagina 63.

Da figura 21 na péagina 87 pode-se observar, como esperado, que a tensao o, é
de compressao em todo o dominio chegando a uma amplitude méxima (= -52 MPa) nas
vizinhancas do raio interno. Essas tensoes se abaixam, em mddulo, consideravelmente ao
longo da espessura do tubo interno e aumentam somente em correspondéncia ao tubo
externo. Nessa figura fica evidente o efeito de protecdo do material isolante por parte dos

tubos metalicos do efeito das pressoes.

A componente 7,, apresenta magnitude significativamente inferior as outras tensoes

e nao sera discutida dada sua incidéncia marginal no estado de tensoes final.

86 Capitulo 4. Resultados

0.00014

0.0001

o

| &

(a) Deflexdo radial u, em auséncia do efeito térmico.

0.00014 |

0.0001

(b) Deflexéo radial u, em auséncia do efeito térmico na extremidade.

Figura 19: Deflexao radial u, em auséncia do efeito térmico.

A tensao o, possui magnitude inferior a o, em todo o dominio e do perfil observado
na figura 22 na péagina 88 e de uma analise detalhada no campo de deformagoes se nota
que os contributos dominantes para essa tensao provém das deformacoes tangencial ¢y e e

axial €,.

Analogamente a o,, gy sofre influéncia dominante do carregamento que deriva
das pressoes. Sendo a pressao interna superior, as amplitudes maiores se constatam nas
vizinhangas do raio interno. Quanto as deformagoes, do campo de deflexdes (figura 19
na pagina 86) se conclui que os contributos de €, para os esforgos se concentram nas
proximidades dos raios interno e externo, com a parte interna que apresenta contributos
positivos e externa negativos. Essa deformacgao apresenta valores almeno uma ordem de
grandeza superiores & o, na regiao do raio interno e nessa zona se verificam as maiores

amplitudes de tensao tangencial. Veja a figura 23 na pagina 88.

E possivel resumir a relacdo entre as tensoes e deformacgoes afirmando que a

deformacao €, é a principal responsavel pelo comportamento da componente o, enquanto

4.2. Resultados do problema azissimétrico 87

M

00006

Figura 20: Deflexao axial u, em auséncia do efeito térmico.

sigma_rr
-le+07

-5.2e+07

Figura 21: Tensao radial o, em auséncia do efeito térmico.

para oy e o, as deformacoes ¢ e €, dominam. Das equagoes constitutivas se nota que
para cada uma das tensoes mencionadas, a constante de proporcionalidade em relagao ao
correspondente contributo de deformagdo dominante, é superior as restantes explicando
em parte a afirmagao anterior. Contudo esse fato informa o analista que os valores das

deformacgoes €,, € e €, sao equiparaveis porém superiores aos valores de 7,..

Por ultimo, toma-se a tensao de Von Mises como parametro do estado de tensao

local, que para o caso se escreve:

1
Com = 5[(@ —09)2+ (0, —0,)?+ (0, — 09)? + 672] (4.2)
Essa tensdo mede o estado de tensao distorsivo e é usada como critério de resisténcia
para materiais duicteis: o estado ¢ considerado seguro se o, < oy, sendo o, a tensao de

escoamento (yielding tension).

A figura 24 na péagina 89 ilustra o estado de esfor¢o usando a tensao de Von Mises

e, como esperado, a zona critica é a vizinhanca do raio interno onde pode-se verificar

88

Capitulo 4. Resultados

0o
D
i
=)
~
11

N
(]
<

fﬁ

Figura 22: Tensao axial o, em auséncia do efeito térmico.

sigma_theta
2.3e+08 -

—2e+8

E1e+8

0
-6.5e+07 -

Figura 23: Tensao tangencial oy em auséncia do efeito térmico.

valores da ordem de o, ~ 240 MPa.

4.2.3 Analise estrutural em presenca do efeito térmico

O efeito térmico entra como forgante no sistema da elasticidade de acordo com a

equacao 3.38 na pagina 63. Assim deve-se resolver o problema de difusao de temperatura

apresentado na secao 4.2.1 para posteriormente resolver o sistema da elasticidade e

finalmente, com o campo de deflexdo conhecido, proceder ao calculo das deformacoes e das

tensoes, sendo que a relacao constitutiva sofre uma alteracao proveniente das deformagoes

anelasticas. A nova relagao entre deformagoes e tensoes é dada conforme a equagao 4.3.

0-7’
Oz
T’T‘Z

09

->\+2u
A
0

A

A 0 A
A+2u 0 A

0 W 0

A 0 A+2pu]

e, — aAT]

. — aAT

e (4.3)
f}/'rz

eg — aAT |

Para esse problema o tinico dado adicional em relagao aqueles ja apresentados nas

4.2. Resultados do problema azissimétrico 89

vonMises
2.4e+08 -

Figura 24: Tensao equivalente de Von Mises 0,,, em auséncia do efeito térmico.

tabelas 4 e 5 é o coeficiente de expansao térmica o que é exposto na tabela 7.

Tabela 7: Coeficiente de expansao térmica

Coeficiente de expansao térmica (a,,) tubos interno e externo - [%} 13 x 1076

Coeficiente de expansao térmica () isolante - [%] 50 x 10~¢

Em relagao aos resultados obtidos na simulacdo em auséncia de efeitos térmicos,
esse caso apresenta muitas diferencas, confirmando a relevancia dos efeitos térmicos: na
figura 25, por exemplo, se observa que a deflexdo radial experimenta valores até duas
vezes superiores em relacdo ao problema sem efeitos térmicos (figura 19 na pagina 86).

Quanto as tensoes, a presenca do efeito térmico é suficiente a mudar consideravelmente o

Figura 25: Deflexao radial u, em presenca do efeito térmico

comportamento da tensao radial o, principalmente para a regiao do isolante onde o maior

coeficiente de expansao térmica gera contributos de deformacao aneldstica consideraveis.

90 Capitulo 4. Resultados

Ainda para a tensao radial o,, o tubo interno apresenta um comportamento similar ao caso
nao térmico onde a parcela dominante é dada pela deformacao radial €,, que apesar de ser
menor do que a deformacao tangencial g, nao é amortecida pela contributo aneldstico
quanto €y. Além disso, pode-se observar que na porgao correspondente ao tubo externo, a
tensao radial é maior em presenca do efeito térmico ja que a parcela anelastica entra de

maneira construtiva nas tensoes de compressao.

Para a tensao tangencial oy, o tubo interno apresenta magnitudes menores prin-
cipalmente pelas deformacoes anelasticas que se opoem a deformacao tangencial que,
apesar dessa oposicao, continua sendo dominante em oy. Para o tubo esterno, os efeito
anelasticos intervém em maneira construtiva com €, que, diversamente do caso atérmico,
¢ ainda positivo para essa regiao. Essa interacao resulta numa importante inversao de
comportamento entre os casos de presenca e auséncia dos efeitos térmicos pois nao somente
muda a zona mais solicitada da estrutura mas também o tipo de solicitagdo (com os efeitos
térmicos o tubo externo passa a ser solicitado em tragao na diregao tangencial). Veja a

figura 26 na pagina 90.

sigma_rr
-1.5e+07 =

(a) Tensao radial o, em presenga do efeito térmico.

sigma_theta
1.55e+08 -

(b) Tenséo tangencial oy em presenca do efeito térmico.

Figura 26: Tensao radial o, e tangencial oy em presenca do efeito térmico.

4.2. Resultados do problema azissimétrico 91

A tensado o, também verifica um relevante aumento de valores maximos quando é
incluso o efeito térmico: os fendmenos aneldsticos sao suficientes a inverter o tipo de esforco
solicitante na parte interna da tubulacao e a aumentar consideravelmente as amplitudes do
estado de tragbes na parte externa. A deformagao aneldstica contrasta (e vence) todas as
outras na zona interna enquanto que para a parte externa se associa de maneira construtiva
a €, e a €g. Nesse caso, 0, apresenta valores da ordem de 175 MPa (tragao) para a parte
externa e 80 MPa (compressao) para a parte interna. Nesse mbito veja a figura 27 na

pagina 91.

Mais uma vez os esforgos distorsivos 7,, sdo despreziveis em relagdo aos restantes.

(@]

|

-8.5e+07

Figura 27: Tensao axial o, em presenca do efeito térmico.

Finalmente, analisando a tensdo equivalente de Von Mises (definida na equagao 4.2
na pagina 87) pode-se notar a importancia do efeito térmico ja que essa assume valores
ligeiramente inferiores para o tubo interno porém muito superiores para o tubo externo.
A zona de valores maximos passa a ser no tubo externo na vizinhanca entre o isolante e

tubo (valores da ordem de 200 MPa). Nesse contexto veja a figura 28 na pagina 91.

vonMlises
1.9e+08 _

16048
1.2e+8

8e+7

—le+7

Figura 28: Tensao equivalente de Von Mises o, em presenca do efeito térmico.

93

5 Discussao

A abordagem inédita utilizada no presente estudo permite uma abrangéncia de
grande parte dos fenomenos aos quais é submetida a estrutura em questao. Na literatura,
muitas vezes uma grande parcela dos fenomenos nao é tratada e as investigacoes correm o
risco de resultar errdneas ou incompletas, ainda mais quando a interacao dos efeitos, como

neste caso, € complexa e repleta de nao-linearidades.

Os modelos considerados podem ser de utilizo para uma grande gama de confi-
guragoes e situacoes de carregamento variando os diversos parametros definidos como
profundidade, pressdes, geometria, propriedades dos materiais, condi¢oes externas e etc. O
trabalho foi conduzido em modo a cobrir em maneira horizontal as potencialidades dos
codigos e dos modelos evidenciando os principais pontos criticos para a geometria em

questao.

As hipdteses iniciais foram validadas a posteriori, algumas delas podem ser elencadas:
pequenas deformagoes para problema local, prestacoes numéricas dos métodos classico e

misto, pequenas curvaturas no problema global dentre outras.

O método cooperativo desenvolvido responde a uma grande dificuldade que deriva
das nao-linearidades do problema e pode ser estendido a inimeras outras situagoes,
inclusive fora do &mbito do calculo estrutural. A sua grande potencialidade esta no fato de
conseguir combinar as vantagens de dois métodos consagrados como a melhor eficiéncia e
estabilidade do método classico e a maior precisao do método misto. Problemas andlogos
que apresentem grande dependéncia de escala das nao-linearidades, necessidade de maior
precisao no calculo das tragoes (ou de outra variavel explicita para problemas que nao
sejam do cédlculo estrutural) e/ou dificuldades na inicializacdo de um método para solugao
de sistemas nao lineares podem potencialmente fruir da combinacao de métodos utilizada

no texto.

Por fim, apesar de nao ter tratado fendmenos dinamicos por questoes de espago
e de objetivos, o design dos cddigos foi concebido para permitir, com minimos esforgos
a extensao da analise a uma situagao tempo-dependente. Cabe ressaltar que a escolha
operativa de nao tratar os fendmenos dinamicos deriva da menor relevancia desses em
relacdo aos esforcos estaticos tratados quanto a analise de resisténcia. Estudos futuros,
preocupados com o fendomeno da fadiga podem partir do presente trabalho evitando muitos
dos problemas intrinsecos ja tratados. Num cenario dinamico, apesar da introdugao de novas

nao-linearidades de carregamento de corrente!, provavelmente o problema apresentaria

L Os carregamentos de corrente teriam de ser tratados com a velocidade relativa entre a corrente externa

e a velocidade local da estrutura.

94 Capitulo 5. Discussdo

maior estabilidade numérica pela introdugao da matriz de massa. Porém novos problemas

como de escalas de tempo seriam introduzidos abrindo novas discussoes.

Voltando ao caso estatico, a sobreposi¢ao dos fendmenos globais e locais foi feita
considerando que toda a tracao que deriva dos carregamentos de corrente e do peso proprio
imerso da estrutura é suportada somente pela porcao metélica da secao transversal e que
as tensoes equivalentes sao uniformemente distribuidas entre tubo interno e externo. As
tensoes na parte inferior do cabo sob tais hipoteses sao por volta de 20 MPa. A sobreposicao
do fenomeno global pode ser vista na figura 29 na pagina 94 para os casos de presenga e

auséncia de efeitos anelasticos.

vonMises
2.4e+08 -

E29+8

E1e+8

(a) Tensdo equivalente de Von Mises 0,,, em presenga do efeito térmico.

\Velal\IN=Y
2.05e+08 -2e+8

(b) Tensdao equivalente de Von Mises o, em auséncia do efeito térmico.

Figura 29: Sobreposicao dos efeitos globais.

Esse tltimo resultado traz consigo algumas discussoes relevantes: note como, em
relacao aos estados sem os fendmenos globais nas figuras 28 na pagina 91 e 24 na péagina
89, os efeitos globais amplificam as diferencgas entre os casos de presenga e auséncia de
efeitos anelasticos pois no caso do tubo interno, diminuem o estado de esforco para o caso

com efeito térmico e aumentam para o caso sem efeito térmico. Ja no tubo esterno, para

95

ambos os casos aumentam os estados de tensdes porém com uma grande diferenca de

magnitude dos valores.

E interessante observar como o efeito térmico “transfere” carregamento para o tubo
externo. Apesar de nao ter sido discutido o efeito da flexao, sabe-se que nas proximidades
do TDP sua participacao se torna relevante e esse fendmeno torna ainda mais delicada a
mudanca do ponto critico ao tubo externo pois a flexdo implica invariavelmente em valores

de tensao equivalentes muito superiores nas partes mais distantes do baricentro.

Em futuros estudos, além dos efeitos dinAmicos mencionados seria de grande
interesse a inclusao dos efeitos de flexdo no modelo para delimitar o quando nos SCR (steel
catenary risers) a resisténcia a flexao é efetivamente desprezivel. Algumas boas referéncias
para essa etapa se encontram em (PESCE; MARTINS; CHAKRABARTI, 2005) e em
(ARANHA; MARTINS; PESCE, 1997).

97

6 Conclusao

No presente estudo, grande parte dos fendmenos de carregamento aos quais é
submetido um riser em regime de operacao foram tratados do ponto de vista da resisténcia
estrutural. Uma abordagem nao convencional foi usada no desacoplamento do estudo
onde sob oportunas hipéteses foi possivel decompor o problema em uma parte global
e em uma local. Desse modo foi possivel concentrar as nao-linearidades em uma fase

computacionalmente menos onerosa sem contudo perder precisao na anélise.

Do ponto de vista numérico, na etapa global foi testada a eficiéncia de dois
métodos consagrados (mized FEM e classic FEM) e foram validadas as hipdteses sobre as
vantagens de cada um. Ainda mais interessante foi a descoberta de como esses métodos
podem funcionar em maneira 6tima se usados em maneira cooperativa em procedimentos de
refinamento de malha: dessa maneira, malhas que ndo exprimem convergéncia para ambos
os métodos se usados em modo independente, podem ser atingidas quando abordadas com
o método combinado. Desse modo foi possivel resolver o problema da grande dependéncia

de escala das nao-linearidades.

Apesar da maior complexidade de implementacao da parte global do problema, os
fendmenos da parte local axissimétrica se demonstraram mais delicados e relevantes dados
seus maiores contributos ao estado final de tensoes. Foi observada a complexidade da
interacao entre os fenémenos e como a intuicao pode falhar para situagoes assim complexas.
Como exemplos pode-se citar como o efeito do aumento de comprimento da estrutura pode
em ultima analise aliviar as tragoes resultantes apesar do amento do peso préprio total da
estrutura ou como um peso préprio maior pode, através de maiores amplitudes de tragoes,

ajudar a compensar efeitos anelasticos que derivam da distribuicao de temperatura.

De qualquer maneira, a conclusao mais importante do presente estudo é sobre a
importancia relativa dos efeitos anelasticos em relacdo aos restantes fendmenos: apesar de
serem comumente desprezados na literatura, foi possivel verificar o quanto tais fenémenos
incidem na resposta final podendo levar a estado de tragao tensoes que seriam de compressao
e por fim podendo mudar completamente a zona mais solicitada e a distribuicao final do

estado de tensoes.

Os efeitos estaticos considerados sao suficientes a limitar uso de grande parte
dos materiais industrialmente disponiveis pois pode-se chegar no presente caso a tensoes
equivalentes de Von Mises da ordem de 200 MPa para o aco, valor muito superior ao
escoamento de muitos materiais dessa classe. Com isso o leitor pode compreender como
¢é delicada a projetacao eficiente desse tipo de estrutura dado que os proprios custos de

material podem resultar proibitivos pelas grandes especificacoes de resisténcia.

Anexos

101

ANEXO A — Elasticidade linear estatica

A.1 Equacoes do equilibrio

Existem duas maneiras para se obter as equacgoes do equilibrio intrinseco: por
equilibrio de um elemento diferencial ou pelo axioma de Euler associado a introducao do

tensor de Cauchy. No presente texto sera utilizado o segundo modo.

Axioma A.1. (Euler) Dado um corpo 2, cada sua parte P C Q pode ser separada do

seu complementar mediante a aparicao de uma forca superficial de contato.

Postulado A.1. (Cauchy) Se P C Q é uma parte de um corpo Q2 em equilibrio, na
superficie de separagdo entre P e seu complementar age uma forca de densidade superficial

t dependente somente do ponto T e da mormal a superficie i em T, i.e.

1T,) (A.1)

bdv
x 5 t/-n/cl.s/ \ >

dv /r/n/(/.s'
1(2) / "N / y
x&

(@)

Figura 30: Axioma de Euler/Postulado de Cauchy

Fonte: Poeta60 (2014, http://it.wikipedia.org/wiki/Continuo_ di_ Cauchy)

Em um corpo equilibrado €2, onde agem as forcas b e 5 respectivamente volumétrica

e superficial si ha que VP C () as quantidades:

R(P) = /P b(Z)dV (T) + /8 il# A (A.2a)

102 ANEXO A. Elasticidade linear estdtica

AJUzﬁg::AJf Fo) AB@AV (@) + [(& — Fo) A& A (A.2b)

Respectivamente resultante e momento resultante se anulam. Note que:

07, 7) = 5(F) em 09 (A.3)

Claramente as mesmas equagoes valem para o complementar de P (P°¢). Portanto

tem-se:

R(P)= M(P,%)) =0 VPCQ, V¥ cR? (A.4)

Introduzindo o tensor tensao de Cauchy, assumindo dependéncia continua e linear

da densidade de forca superficial f(f, 1) em relagdo a normal 7 da superficie que divide o
corpo, de modo que:

tz, i) = T(Z).7 (A.5)

Assim podemos deduzir as equacoes de equilibrio intrinseco usando os principios

de conservagao dos momentos linear e angular e com o auxilio da formula de Gauss:

Teorema A.1l. (Equacgées de Equilibrio Intrinseco) Seja Q) um corpo em equilibrio
sob acdo das forcas b:Q — R3 volumétrica e §: 9Q — R3 superficial entao, sendo T(Z) o

tensor tensao de Cauchy as equagoes de equilibrio intrinseco sao:
div(T(Z)) + b(Z) =0 se i €N
)7 = §(T) se T € 0N (A.6)
T(Z) = TY(Z) VT e)
Dem.: Uma das particoes possiveis é P = () e nesse caso a equagio (A.2a) se reduz

/ 2)dV (& +/).AdA(F) = 0

Usando o teorema de Gauss no sequndo adendo se obtém a:
[B@)av(@) + [div(T(@)dA) =
Q Q

Como o mesmo raciocinio pode ser usado para um volume de controle qualquer,

nao necessariamente todo o dominio, a equacao pode ser escrita na sua forma local:

div(T(Z)) + b(F) =0 VZ e Q

Para a simetria se usa a notacdo de Einstein do cdlculo tensorial. Seja portanto

um genérico volume de controle V. C €2 e a sua correspondente fronteira 0S). Denotando

A.2. Cinemdtica e Congruéncia em Pequenas Deformagies 103

ainda a componente normal d superficie do tensor tensio como T™ e o braco do momento

como T = xj€;, a equagao (A.2b) fornece:

AﬂRi@:iArAb(MV() [FATE A =0

Que em notagdo tensorial se escreve:

/ewk x;bdV (2 —I—/ ewkm]Tk”)dA() =

Notando que Tk(n) = OpiNm € usando o teorema de Gauss:
0:/ ot bedV (7 / n T dA(T
Ve]kx] LdV (Z) + (Wejkxjo R0 (%)
:/‘/Ewk{L’]bde(f>+/V(Ewkl']0'mk)7md‘/(f)
:/ Eijkijkdv J_/” —|—/ Eijkmjmo-mk+€ijkxj0-mkm)dv(f)

—/ €ijkTi (Ompm + bi)dV (T +/ €iikTimOmpdV (Z),

A primeira integral se anula porque seu integrando corresponde d equagdo de
equilibrio ja desenvolvida, portanto resta so o sequndo termo que se reduz notando que

Tjm = 0jm. Assim com a arbitrariedade do volume de controle tem-se que:

€ijkOjk = 0 Ve
Essa ultima corresponde em notacdo tensorial d condi¢io de simetria. {

Em coordenadas cilindricas as equagoes de equilibrio (A.6) sao:

B 1 (% (0 — 09)) + G 4 b, =0
drgr_i_ (809 +279r)+dmz —1—b9—0 (A.7)

6772_'_ (8T92+7—7’z)+802 +b =0

A.2 Cinematica e Congruéncia em Pequenas Deformacoes

A.2.1 Cinematica do meio e equacdes de campo

Deformar um corpo significa alterar a posigao relativa entre dois pontos (ou
particulas). A posicao e a evolugado de um ponto podem ser descritas introduzindo o vetor

deslocamento (%, t) e o vetor velocidade U(Z,t).

Para a descricao da cinematica se introduzem dois tipos de coordenadas:

L Simbolo de Levi-Civita

+1 se (i,4,k) =(1,2,3) ou (2,3,1) ou (3,1,2)
€k =14 —1 se (4,7,k) =(3,2,1) ou (2,1,3) ou (1,3,2)
0 sei=joui=kouj==%k

104 ANEXO A. Elasticidade linear estdtica

Coordenada espacial ou Euleriana 7 = (x;, 25, x3) que representa a posicao de um

ponto em relagdo ao sistema de referéncia;

Coordenada material ou Lagrangeana A= (Ay, Ag, A3). Sendo o ponto P o ponto
que ocupa a posicao & no instante t a correspondente coordenada material A=A (2, 1)
distingue a posi¢ao que P ocupava na configuragao indeformada (que se convém no

instante inicial t =0).

Das coordenadas introduzidas derivam dois modos de descrever os vetores desloca-

mento e velocidade:

Coordenada espacial ou Euleriana

. Dil(E ¢
AEt) =T — Az, §Et = 2B, (A.8)
Dt
Coordenada material ou Lagrangeana
Lo S L DU (At
U(At) =Z(At)— A, V(Z,t) = 1(%’) (A.9)

Neste texto se adotara a descrigdo Lagrangeana. Note que para essa vale a seguinte:
. oU.
aAj Z J 8AJ ()

A.2.2 O tensor deformacao

Para poder obter uma medida de deformacao considera-se dois vetores passantes
pelo ponto P de coordenada genérica no estado indeformado A com a seguinte orientacao
genérica:

dsg dA18) + dAyés + dAsés (A.11)
ds, = dAIE + dA5e, + dALEs (A.12)

No estado deformado o ponto P ocupa a posicao f(/f, t) e os vetores genéricos

assumem a orientacao, dada pelo campo de deflexdo, seguinte:
d_:S‘ = d$1€1 + dl’ggg + d$3€3 (A]_?))

ds = daté) + duiés + doés (A.14)

Uma boa medida de deformagao é dada pela quantidade:

ds.ds — dsg.dsy’ (A.15)

Derivada material: 2% = i, 4+ (4.V)d

3 Note que: ds.ds — dso.dsy = |ds||ds | cos® — |dso||dsy| cos By = 32 (dwda? + dA;dAY)

2

A.2. Cinemdtica e Congruéncia em Pequenas Deformagies 105

Portanto através da (A.10) se obtém que:

3
doidet — dAdAT = 3 <5U 4)(m 49U)dAjdA;; — dAdA?

= 04, A,
L OUss OU; U
_ K3 6 + 7 7) 7
szl (T 94,7 T 94, 04,
X3 k

Figura 31: Deformacao
Fonte: (SALSA, 2014)

Finalmente pode-se introduzir o tensor deformacio E = €;; com:

1oy oU;, OUy, .
Cis = {aA 8Ai Z 04, DA, } ny=123 (4.16)
E entao pode-se escrever:
3
ds.ds — dsy.dsy =2 Z €ijdA;dA; (A.17)

1,j=1

O tensor deformacgao introduzido resume uma série de medidas de deformacao nas

suas componentes, em seguida observe algumas dessas medidas:

e Tomando dsy = d;; = dsoé), tem-se que ds = ds (|ds| = ds) e substituindo na
(A.17) tem-se:
ds® — dsj = 2e11ds; (A.18)

Usando o pardmetro v, = % dsdso de deformacao longitudinal conclui-se que:

Y1 =V 1+ 2611 —1 (Alg)

Assim, com a hipotese de pequenas deformacoes, usando expansao de Taylor em
torno de €;; = 0, obtém-se 7, =~ €11, i.6., a componente €; representa a varia¢ao

relativa de comprimento na direcdo do i-€simo eizo.

106

ANEXO A. Elasticidade linear estdtica

e Analogamente tomando dsy = dsé) e d;; = dsjéy a (A.17) fornece:

dsds” cos 8 = 2e15dsods; (A.20)

Com o auxilio da (A.18) se tem ainda que ds = (142¢;1)dsp e que ds* = (1+2e22)ds}.
Portanto introduzindo o angulo 12 = § — 0 que ¢ a variacao de angulo que ocorre na
deformacao entre os dois vetores inicialmente perpendiculares, tal que sin ;5 = cos 6,

tem-se que:
2612

V14 2€e11v/1 + 260

(A.21)

siny1p =

Novamente, fazendo uma expansao de Taylor em torno a €15 = 0 resta que 12 ~ 2€;9,
i.6., €;, 1 # j representa a metade da variacio do angulo entre dois vetores que sdo

paralelos aos eixos i-ésimo e j-ésimo no instante inicial (shear strains) .

Por 1ltimo, considera-se o Jacobiano da transformagao A :i'(/Y, t) que representa
a porcentagem de variagdo de volume apds a deformagao. Da equacao (A.10) tem-se

que:

(9(1’1,:1027%)) _ det((sij + (A.22)

3U¢)
8(A1, A27 A3

0A,;
Desprezando os termos de ordem superior (pequenas deformagoes) tem-se que:

a<xlax27‘r3) (aUz) 3
a(A17A27A3) ‘ ! - 8AJ +;€ ()

Se conclui que o trago do tensor deformacao representa a dilatagdo cubica relativa

de volume apds a deformacao.

A.2.3 Linearizacao

Para pequenas deformacgoes o tensor deformagao se simplifica pois as componentes

de ordem superior sao despreziveis, operando uma mudanca de notagao e observando que

para problemas estaticos em pequenas deformagdes as descrigoes Euleriana e Lagrangeana

coincidem se tem:

_,) _ 1{ 8ul 8uj
2

y ,7 =1,2 A.24
GZJ(U' (993]- + 81’1}, Za] 9 a3 ()

O coeficiente de dilatagcdo cubica assume uma forma simplificada:

O = Z: 361'1'(1_[) = dZU(ﬁ) (A.25)

Nesse caso as condigoes de contorno do problema tais como carregamentos ou

deflexdes impostas podem ser impostas em relagdo ao dominio de referéncia (indeformado)

assim como as equagoes de equilibrio desenvolvidas.

A.83. Relagoes constitutivas e equagdo de Navier 107

A.3 Relacoes constitutivas e equacao de Navier

A.3.1 Relacbes constitutivas e Lei de Hooke

Na regiao elastica do comportamento de um material, existe uma relagao linear
entre deformagao e tensao, ou seja o tensor tensao € funcdo linear do tensor deformacao.

Isto quer dizer que a lei que rege o comportamento do material é do tipo:

Tij = CijkhEkh (A-26)

Com Cjjip, as componentes de um tensor de quarta ordem C. A homogeneidade do
material, se presente, garante que as componentes Cj;, sejam 81 constantes (constantes
elasticas). Com a simetria de ambos os tensores as constantes se reduzem a 21 e finalmente

com a isotropia do material? se reduzem a duas de modo que (Lei de Hooke):

Ti; = 2ue;j + Mo, ou T =2pE 4+ ATr(E)I (A.27)

Onde as p e A sdo chamadas constantes de Lamé. A equagao (A.27) é facilmente
inversivel observando que Y3, Ty; = (2u + 3\)Tr(E) pode-se obter:

= W T A.28
U ou T ou(zutan) (4.28)

Na engenharia sdo mais conhecidas as constantes mdodulo de Young E e coeficiente

de Poisson v que sao dadas pelas seguintes transformacoes:

g M2t 3A) (A.29)
A
A 1
= — O<v<-— A.30
Y 200+ p)’ < Y 2> (A.30)
E a (A.28) pode ser rescrita como:
1+v v

4 TIsotropia corresponde & invaridncia em relacdo a rotacoes de qualquer entidade. Seja uma matriz de

rotagdo Q genérica; a invaridncia por rotagdo de C corresponde a:

QC[E|Q' = C[QEQ!] VE simétrico

108 ANEXO A. Elasticidade linear estdtica

A.3.2 Equacao de Navier

Partindo da equacao (A.6), substituindo a relagao (A.27) e observando que:

3 9T
(V.T) =) -~
jgl 833j
3 (9 3uz (9uj (9 R
—H2 G {axj * e, } A g (@)
J_
= plAu; + (p+ N) 5 —div(a@),
Pode-se obter a equagao de Navier:
pAT + (p+ N Vdiv(@) +b=0 Vi€ (A.32)

Usando a identidade:
rot(rot(F)) = Vdiv(F) — AF
A equacao de Navier pode ser rescrita como:
(2p + N)Vdiv(@) — prot(rot(7)) +b=0 Vi e Q (A.33)
E finalmente pondo em evidéncia as constantes de Young e Poison:

1 -
—— | Au+ ——Vdww(u = r e) A.34
2(1+V)< U+ 1_2Vde(u)) +b=0 Vie (A.34)

109

ANEXO B - Complementos de andlise funci-

onal

Neste complemento de texto sdo considerados alguns elementos de analise funcional
extensivamente usados no corpo do texto. Para o leitor que nao tem familiaridade com a
analise funcional a leitura sequencial deste capitulo pode ser exaustiva pois é muito densa
de conceitos que a primeira vista parecem muito abstratos, no entanto essa abstracao
intrinseca da andlise funcional é a responsavel pelo seu sucesso pois permite uma visao

panoramica de uma grande classe de problemas.

Um exemplo de aplicagdo dos conceitos enumerados esta na propria monografia e
possivelmente a melhor maneira de fruir deste complemento é uma leitura paralela com o

corpo principal.

Para o leitor interessado, textos mais completos podem ser encontrados em (SALSA,
2010), (YOSIDA, 1974), (ADAMS, 1975).

B.1 Espaco Normado, de Banach e de Hilbert

Definicao B.1. Um espaco normado X ¢ um espaco linear em R t.q. existe uma aplicacao

chamada norma ||.|| : X — [0,00) que verifica as trés sequintes propriedades:

i ||z]] =0 <= x =0 (anulamento);
i [[\x]| = [M|||z|]|] VA eR, Vo e X (homogeneidade);

i ||z +yl| < ||lz|| + 1yl Vz,y € X (inequagio triangular);

Observacao Uma norma define naturalmente uma nocao de distdncia em um

espago normado: d(z,y) = ||z — y|| = ||y — =||.

Note que essa série de conceitos servira para atribuir a um conjunto de fungoes
uma estrutura ao quanto similar a estrutura familiar dos espagos R", onde noc¢oes de

norma, angulo e distancia sao intuitivas.
. ~ PR P
Exemplo Em R", seja p € [0, 00) entdo normas possiveis sdo ||z|| = (A |mi]p> :

Exemplo Em C([a, b]) (espago linear' de fungdes continuas no intervalo [a, b]) uma

norma possivel é || f|| = maxycpa | f(1)]-

1 Vo, € R (af ""‘59)“) = af(t) +ﬁg(t) vt € [avb]’ Vf,g € C([aab])

110 ANEXO B. Complementos de andlise funcional

Observagao Uma sequéncia de elementos de um espago normado {x;}en é dita

convergente se Jr € X : lim; , ||z; — z||x = 0.

Definicao B.2. Um espaco de Banach X é um espaco normado t.q. toda sequéncia de

Cauchy? é convergente.

Exemplo Em C*([a, b]) espaco linear de fungdes continuas e derivéveis k vezes com

k

continuidade no intervalo [a, b], a norma || f|| = ¥F_ maxefay | /()] o faz um espaco de

Banach.

Finalmente pode-se introduzir o conceito de espaco de Hilbert que traz consigo o

conceito de angulo entre elementos. Mas antes note a definicdo seguinte:

Definicao B.3. Seja um espaco linear H. Um produto interno ou escalar ¢ uma aplicagdo

bilinear, simétrica e definida positiva de H x H em R .¢é. uma fungdo
(,)o:HxH-—>R

que possui as sequintes propriedades:

i (z,x) =0 <= x =0 (anulamento);
i (ax+y,2) =ar,2) + (y,2) Vr,y,z € H, Va € R (linearidade);
Wi (x,y) = (y,x) Vz,y € H (simetria);

iv Ve € H (z,2) > 0 (positividade);

Das propriedades ii e iii se conclui a bilinearidade.

Definicao B.4. Seja um espaco linear equipado de um produto interno. Esse é dito de
Hilbert se a norma induzida por tal produto interno (||x|| = \/(z,x)) faz do espago um

espaco de Banach ou completo.

Proposicao B.1. Vice-versa, um espaco de Banach H € de Hilbert se a sua norma satisfaz

a regra do paralelogramo:

Iz +yll* + [lo — yl* = 2||=]]* + 2[|y|* (B.1)

Nesse caso o produto interno induzido pela norma é:

(.9) = 3 [llz + 911 = Ilell” = IIyIP (B.2)

2 {z;}ien é de Cauchy se limy, ;oo ||Tn — Tm||x =0

B.2. Funcionais e formas bilineares 111

Exemplo Um exemplo de espaco de Hilbert é o espago funcional de funcoes a
quadrado somdvel, essas funcgoes sao denotadas pelo simbolo L*(2) onde é o dominio de

referéncia:
ﬁ@D:{fﬂ%%R:AU@m%Q<+w} (B.3)
Esse espaco equipado com o produto escalar (f, g) = [f(Z)g(Z)dQ e consequente-
mente com norma induzida |[f|[z2 =/ Jo(f(Z))?d€2 é de Banach.

Exemplo Analogamente ao espago funcional anterior pode-se introduzir o espaco
genérico LP(€2) com p € [1,00]. Esses espagos sdo de Banach com a norma ||f|[zz =
(fQ(f(f))de)% para o caso p € [1,00) e ||fl|re = esssupgealf(T)|*, no entanto essas

normas nao induzem um produto escalar e portanto esses espagos nao sao de Hilbert.

B.2 Funcionais e formas bilineares

Definicao B.5. Dado um espaco funcional V, um funcional é uma aplicacio sobre V
com imagem em R, i.é.:

F: V>R

Um funcional é dito linear se:

FAu+7v) = AF(u) +vF(v) Yu,veV, VA,yeR (B.4)

Um funcional é dito limitado se:

30>0: |[Fw)| <Cllull YueV (B.5)

Uma notagdo comumente usada é F(u) ou (F,u), note que, para operacoes de
produto escalar, de funcionais e de norma pode ser necessaria a especificacdo do espago no
qual se efetua a operagao com o objetivo de evitar ambiguidades, por exemplo pode ser

necessario usar a notagao (u,v)y, (F,v)y e ||ul|x.

Observacao Um funcional limitado e linear que age sobre um espago de Banach ¢

também continuo ja que: ||z, —z|| = 0 = |F(z,)—F(2)| = |F(x,—2)| < C||z,—z|| = 0

Pode-se definir o espago dual (denotado com V') de um espaco de Banach V

composto de funcionais lineares e limitados sobre V i.é:

V' ={F:V = R: F ¢ linear e limitado } (B.6)

3 esssup denota o estremo superior essencial de uma funcédo, i.6., o minimo valor M para o qual a

medida da unido de pontos T t.q. |f(Z)| > M seja nula. Ver (RUDIN, 1986) para teoria de medidas e
andlise real.

112 ANEXO B. Complementos de andlise funcional

Tal espago é de Banach se dotado da seguinte norma:

|[F'(v)]
[|[F|ly» = sup (B.7)
veV\{0} [[v][v

O seguinte é um resultado muito importante da andlise funcional:

Teorema B.1. representacao de Riez Seja H um espaco de Hilbert equipado de produto
escalar (.,.)g. Para todo funcional linear e limitado F de H' existe um tinico elemento

xr € H tal que seja vdlida a:

F(y) = (zr,y)u VyeH (B.8)

Reciprocamente, todo elemento x € H identifica um tinico funcional linear F, de
H' tal que:
F(y) = (z,y)g VyeH (B.9)

Em ambos os casos essa identificacdo € uma isometria, i.€.:

Eellgr = [l e |[Fllg = lleplla (B.10)

Do teorema (B.1) se deduz que existe uma transformagao bijetiva e isométrica entre
um espago de Hilbert e seu dual, essa aplicacao é chamada mapa de Riez e a denotaremos
com Ry : H— H'. Note que:

Ry(z) =F, (B.11a)

RN F) = zp (B.11b)

Exemplo Um exemplo de funcional linear e continuo para um espaco do tipo

, o —» — 1 1 _ .
LP(Q) € F(f) = Jo [(2).9(2)dQ2 com g € LI() e 5 + - = 1. Esse resultado deriva
(quanto limitagao do funcional) de uma propriedade dos espagos LP muito importante dita
desigualdade de Hélder:

Proposicao B.2. Desigualdade de Holder Sejam p,q € [1,00| dois expoentes conju-
gados, i.€., que satisfazem zl)+% = 1. Sejam ainda as fungoes f € LP(Q) e g € LI(Q) entao

vale a sequinte desigualdade:

I/Qf.ng‘ < (/prdﬂ)’l’(/gqug)é (B.12)

Ou em modo sucinto:

F-glloe < [1F 1w llgll Lo (B.13)

B.2. Funcionais e formas bilineares 113

Continuando o exemplo anterior, nao s6 F' é um exemplo de funcional como se
pode demonstrar que todos os funcionais de LP(€2) possuem essa forma para p € [1,00),
i.6. pode-se identificar® o espaco (LP(£2))" (dual de LP(£2)) com o espaco L7(£2). O abuso
de linguagem seguinte é usual: L7(Q2) é o dual de LP(£2).

Ainda no ambito do exemplo anterior note que no caso especial L*(€2), seu dual é

ele mesmo e dai um exemplo do teorema (B.1).

A esse ponto é possivel proceder ao conceito de forma:s:

Definigao B.6. Dado um espaco funcional normado V, uma forma é uma aplicagio a(., .)

que associa a cada par de elementos de V, um numero real, i.é:

a:VxV-oR (B.14)

Uma forma é bilinear se vale:

a(Au + yw,v) = Aa(u,v) + ya(w,v) VA, v €E€R, Yu,v,w € V,

a(u,yw + A) = ya(u,w) + Aa(u,v) YA v e€R, Yu,v,w eV, (B.15)
Uma forma é continua se AM > 0 t.q. seja valida:
la(u,v)| < M||ullv|v]ly Yu,v € V; (B.16)
Uma forma é simétrica se vale:
a(u,v) = a(v,u) Yu,v € V; (B.17)
Uma forma é positiva se vale:
a(u,u) >0 Yu#0eV; (B.18)
Uma forma é coerciva se da > 0 t.q. seja valida:
a(u,u) > al|lull}, Yu € V; (B.19)

Para finalizar a secao é introduzido o conceito de tripla Hilbertiana mas antes note

a seguinte definigao:

Definicido B.7. Sejam H,V dois espacos de Hilbert. E dito que V é contido e imerso
com continuidade em H (notagio V.— H) se existe uma constante M > 0 t.q. ||u||g <
Mllully Yu € V.

E dito que V € denso em H se Yu € H 3 uma sequéncia {u, tnen v, € V ¥n € N
t.q. ||un, — ul|lg — 0. Em palavras V é denso em H se para todo elemento u de H existe

uma sucessao de V que aprorima u em norma H arbitrariamente bem.

4 Identificar pois se demonstra facilmente que além da correspondéncia ser bijetiva se tem que

[[Fgll(rry = llg]|ze mas o funcional é dado pela associacdo de g com a integral no dominio €.

114 ANEXO B. Complementos de andlise funcional

Observagao O conceito de densidade pode ser entendido através dos ntimeros
racionais Q e nimeros reais R: para todo € > 0 e para todo ntimero real r existe um
nimero racional a,, arbitrariamente préximo de r, ou seja |a, — r| < e. O conceito de
densidade pode ser estendido para espagos funcionais (que contrariamente aos espagos R™,

sao infinito dimensionais).

Definicao B.8. Sejam H,V dois espacos de Hilbert com V — H com densidade, entdo
H' — V' ¢ a tripla Hilbertiana é dada pela

denso Riez ; denso _

VCH=H CV (B.20)

B.3 Diferenciacao em espacos lineares

Nesta se¢ao sdo expostos brevemente os conceitos de derivagao em espagos funcionais
lineares, para uma descrigdo mais detalhada veja (KOLMOGOROV; FOMIN, 1999).

Defini¢ao B.9 (Derivada forte ou de Fréchet). Sejam dois espagos normados X eY e F
uma aplicacio de X em'Y , definida em um conjunto aberto E C X. Fssa aplicacao € dita
diferencidvel em x € E se existe um operador linear limitado L, : X — 'Y para o qual seja

valida a sequinte:

Ve>0,30>0: [[Flx+h)—F(x)—Ly(h)|ly <e€|lhllx YheX: ||h]|x <4 (B.21)

A L.(h) (que é um elemento de Y) € dita diferencial forte ou de Fréchet de F
avaliada em x € E na diregio h. O operador L, € dito derivada forte de F' e é indicado
com F'(x).

Outro conceito importante é o seguinte:

Defini¢do B.10 (Derivada fraca ou de Géteaux). Sejam dois espagos normados X e Y
e F' uma aplicagdo de X em Y. O diferencial fraco ou de Gateaur de F' em x € o limite
(nao sempre existente):

F(z +th) — F(x)

DF(xz;h) = lim Vh e X (B.22)
t—0
Com t € R e a igualdade entendida como HDF(x; h) — lim;_q w v 0.

Se o operador DF(x;h) é linear, pode ser escrito DF (x,h) = F'(x)[h] e nesse caso F'(x)

¢ a derivada fraca ou de Gateaux.

B.4 Distribuicoes

As distribuicoes sdo uma extensao do conceito de funcao. A teoria foi criada com o
propdsito de manipular singularidades que se encontram em diversas aplicagoes: a delda

de Dirac é um exemplo de distribuicao como sera visto adiante.

B.J. Distribuicoes 115

Antes de poder definir o conceito de distribuicao deve-se ter em mente alguns

conceitos que véem apresentados a seguir:

Seja €2 um conjunto aberto de R" e f: Q2 — R.

Definicao B.11. O suporte de uma fungio f é o menor subconjunto fechado do conjunto

de pontos onde a funcao assume valor nao nulo, i.€é:

suppf = {7 : f(T #0)}° (B.23)

Definicao B.12. Uma funcao f : 2 — R é dita a suporte compacto em €2 se existe um

conjunto compacto® K C Q t.q. suppf C K.

Pode-se agora dar a seguinte definigao:

Defini¢ao B.13. D(Q)) € o espago das fungoes infinitamente derivdveis e com suporte

compacto em €2, 1.é:

D) ={feC™):3IK CQ, compacto : suppf C K} (B.24)

Para facilidade de leitura ¢ introduzida a notacao multi-indices conforme segue:
seja a = (aq,ag,...,q,) uma sequéncia de niimeros naturais nao negativos, entao seja

f:Q— R, com Q C R" entdao usa-se a seguinte notacao:

0l f ()

D#(F) =
1(@) Diz,0% 0, .. 0%,

Com |af = X1 o

O espago D(2) é também conhecido como espago de fungdes teste. Neste espago
nao é possivel introduzir uma norma que o faga um espago de Banach no entanto é possivel,

mesmo na auséncia de norma introduzir uma convergéncia adequada:

Defini¢ao B.14. Dada uma sequéncia {¢ }ren de fungoes de D(S2), entao essa é conver-
gente a uma fungao ¢ de D(Q) (¢, —> ¢ em D()) se:

i O suporte das fungoes ¢y sao todos contidos em um dado compacto K C €);

it D¢, — D¢ uniformemente " Yo € N*;

Com esses conceitos é possivel dar a definicdo de distribuicao:

A notagdo A significa o menor conjunto fechado que contém A, por exemplo (a,b) = [a, b].

Q C R™ é dito compacto se é fechado e limitado

T ¢r — ¢ uniformemente se |¢y(T) — #(F)| "Z¥0 vien

116 ANEXO B. Complementos de andlise funcional

Definicao B.15. O espaco das distribuicoes ¢ o conjunto de funcionais lineares e con-
tinuos® sobre D(Y). Em outras palavras, o espago das distribuicoes é o dual de D(Q),

denotado com D'(Q).

Pede-se ao leitor que nao se desmotive com a quantidade de conceitos matematicos
introduzidos: a analise funcional parece sempre & primeira vista um instrumento sem fins
praticos mas a realidade é que grande parte das aplica¢coes modernas cientificas necessitam

dessa ferramenta para uma compreensao completa.

Exemplo Como dito anteriormente, a delta de Dirac é uma distribuicao e a sua
acao como funcional sobre uma fungao teste é a seguinte: seja a € 2 entao a correspondente
delta 0, age da seguinte maneira: (J,,) = ¢(a) Vo € D(Q).

A este ponto nos falta definir uma nocéo de convergéncia para D' (Q):

Definigdo B.16. Uma sequéncia de distribuicoes {T}}ren converge em D'(Q) a uma
distribuicio T de D' (Q) se

lim (T1.6) = (T.¢) V6 €D(Q) (B.25)

Exemplo Note que para toda fungao f € L?(Q2) é possivel associar uma distribuicao
Ty € D'(Q) t.q. a sua acdo em D(Q) seja:

(T1,0) = [fod2 ¥ e D)

Sera visto que o contrario nao é verdadeiro, i.é, existem distribui¢oes que ndo possuem
uma correspondente funcio em L?(Q) (& delta de Dirac é uma delas?) no entanto vale o

seguinte lema:

Lema B.1. O espago D(Q2) € denso em L*(Q).

E gracas a esse lema é possivel demonstrar que:

L*(Q) Cc D(Q) (B.26)

A teoria das distribui¢ao permite definir um novo tipo de derivada chamado derivada

distribucional que generaliza o conceito de derivada:

8 Note que o conceito de continuidade em D(£2) ndo coincide com o de limitagdo (pois D(2) ndo é

espaco de Banach): Um funcional continuo T sobre D(Q) satisfaz V{¢} convergente se tem:

dx — ¢ em D(Q) = lim (T,) = (T.9)

9 [, 0%dQ2 =0

B.J. Distribuicoes 117

Seja portanto 7 € D'(2) com Q C R™. A derivada distribucional de T é a
distribuicio T* que indicaremos com T* = VT € D'(Q;R") que satisfaz o teorema da

divergéncia de Gauss:
(VT,¢) = —(T,divg) V¢ € D(;R™)Y (B.27)

Em outras palavras:

or 9

) YoeD), i=12,....n (B.28)

Do mesmo modo sao definidas as derivadas de ordem superior:

Defini¢ao B.17. Para todo multi-indice o = (o, o, . .., cv,) € sempre definida, i.€ existe

sempre, a derivada distribucional de T € D(S2) conforme a sequinte:

(DT, ¢) = (—=1)"NT, D*¢) V¢ € D(2) (B.29)
. . 0 sex <0 o, L,
Exemplo Note que a fungdo de Heaviside X (,00] = nao é derivavel
1 sex>0

em modo classico pois apresenta uma singularidade. No entanto essa funcao pode ser
derivada distribucionalmente:
dx do +oo deb +00 d¢b '
(Xoo) =~ o)== [xGode=— [Zdw =~ lim 6(x) + 6(0)
¢ tem supor__te compacto gb(O) _ <607 ¢> ‘v’gb c D(R)

Note as seguintes propriedades validas no ambito da derivada distribucional que

nao sao validas para derivadas classicas.

i Toda distribuicao ¢ infinitamente derivavel distribucionalmente;

ii Se T, — T em D'(Q), n — o0 = DT}, — DT em D'(Q), n — oo, Va € N,

. . ~ . . . 7’ ~ e /
ou seja a derivagao distribucional é uma operacao continua em D (2);

Observagao Caso uma fungio f possua derivada classica, a derivada distribucional
da distribuicao T que identifica f em sua agao, corresponde a distribuicao que identifica
f". Em outras palavras usando um abuso de linguagem: a derivada distribucional coincide

com a classica caso essa segunda exista.

10 ID(Q’R”) = {¢ = [¢1a¢27 .- 7¢n] : (bi € D(Q)}

118 ANEXO B. Complementos de andlise funcional

B.5 Espacos de Sobolev

Como visto anteriormente, as fungoes de L*(Q) sdo também distribuigoes, mas isso
nao significa que as suas derivadas distribucionais sejam elementos de L*(Q). A prépria
fungao x(ap estd em L*([a,b]) mas a sua derivada distribucional §, — 8, ndo pertence a tal

espaco. Os espacos de sobolev sao definidos nesse contexto:

Definicao B.18. Seja 2 C R™ aberto e k um numero natural positivo. Espaco de Sobolev
de ordem k sobre Q (H*(Q)) é definido como o espago formado de funcoes de L*(Q) que

possuem todas derivadas distribucionais até a ordem k ainda elementos de L*(S2), i.é:
HYQ)={f € L*(Q): D*f e L*(Q), Ya e N": |a| <k} (B.30)

Note que vale a seguinte imersao H*™(Q2) C H*(Q) k > 0. Identificando o espaco
L?(2) com H(Q).

Os espacos de Sobolev sao di Hilbert se dotados do seguinte produto escalar:

(f. 9y = 3 [(D"N(D9)a2 (B31)

o<k

Que por sua vez induz a seguinte norma:

3 /Q (Do f)2dQ (B.32)

laf<k

e = /s Py = J

Pode-se ainda definir as seguintes seminormas'':

oy = le_ R (B.33)

Dessa maneira pode-se simplificar a equagao (B.32):

k
AWz @) = 4 D2 1 Fime) (B.34)
m=0

Exemplo Note que nem todas as fungoes presentes em espacos de Sobolev sao

continuas: seja Q = {(z,y) € R? : 22 +y? < 1} ou seja a area delimitada pela circunferéncia
k

L pertence & H'(Q2) (verifique que as integrais

In e

do seu quadrado em €2 e do quadrado do seu gradiente em €) sdo finitas) no entanto essa

de raio 1, entdo a fungao f(x,y) =

funcao possui uma singularidade na origem e portanto nao é continua em §2.

Apesar disso é possivel derivar uma relagao entre espacos de fungoes continuas e

de funcoes em espagos de Sobolev:

I Possui todas as propriedades de norma menos o anulamento.

B.5. Espagos de Sobolev 119

Teorema B.2. Imersdao de Sobolev Seja) um subconjunto aberto de R™. Entdo se a

fronteira de Q (0Q) é “suficientemente reqular™?, entdo:

HYQ) c C™(Q) sek>m+ g (B.35)

Note que para uma dimensido (n = 1) as fungoes de H'([a, b]) pertencem também
a 0°(Q) e portanto sao continuas. J4 em duas dimensdes, é necessario que f esteja em

H?(Q) para garantir a continuidade.

Uma tltima observagao para o caso das fungdes de H'(€) que se anulam na fronteira
do dominio (Hj(€2)) ou em parte do mesmo (Hy = {f € H'(Q): f(Z) =0VZ € 'p})

vale o seguinte resultado:

Proposicao B.3. Para as fungées de Hi =~ a seminorma de H'(Q) € equivalente' d sua

norma pois vale a sequinte desigualdade de Poincaré:

vl 220 < Calv|m@) Vv e Hy, (B.36)

A desigualdade de Poincaré vale para outros casos, um caso importante para o
texto é o espago das fungoes de H'(2) a média nula (H} ={ve H(Q): [ovdQ =0}).

12 De modo heuristico, a regularidade de uma fronteira ¢ medida pela derivabilidade do gréfico gerado

por essa com um sistema cartesiano colocado em pontos da prépria fronteira e pela propriedade do
dominio de estar sempre de um sé lado da fronteira

Duas normas sio equivalentes em um espago funcional X se 3¢ > 0, C' > 0 constantes: ¢||z||x <
[lz]ly < Cllz||lx VYxe X.

13

121

Referencias

ADAMS, R. A. Sobolev Spaces. New York: Academic Press, 1975. Citado na pagina 109.

ARANHA, J. A. P.,; MARTINS, C. A.; PESCE, C. P. Analytical approximation for the
dynamic bending moment at the touchdown point of a catenary riser. International
Journal of Offshore and Polar Engineering, p. 293-300, 1997. Citado na pagina 95.

BATH, K.-J. Finite Element Procedures. [S.1.]: Prentice-Hall, 1996. Citado na pagina 30.

BERGMAN, J. Temperature of ocean water. Webpage. Disponivel em: <http://www-
.windows2universe.org/earth/Water /temp.html>. Acesso em: 11 ago. 2014. Citado na
pagina 60.

BREDERO Shaw. 2014. Webpage. Disponivel em: <http://www.brederoshaw.com-
/solutions/images /illustration_pip.jpg>. Acesso em: 04 ago. 2014. Citado na pagina
22.

CORIGLIANO, A.; TALIERCIO, A. MECCANICA COMPUTAZIONALE. [S.1.]:
Esculapio, 2005. Citado na pagina 30.

CPLUSPLUS.COM. 2014. Webpage. Disponivel em: <http://www.cplusplus.com-
/reference/>. Acesso em: 8 ago. 2014. Citado na péagina 66.

DEVELOPERS libMesh. libmesh. 2014. Webpage. Disponivel em: <http://libmesh.github-
do>. Acesso em: 20 out. 2014. Citado na pagina 67.

GELFAND, I. M.; FOMIN, S. V. Calculus of Variations. [S.1.]: Dover Publications, 2000.
Citado na pagina 43.

OFFSHORE TECHNOLOGY CONFERENCE, 2002, Houston. Optimized Design of
Pipe-in-Pipe Systems. Houston: DeepSea Engineering Management Ltd, 2002. Citado na
pagina 23.

INCROPERA et al. Fundamentals of Heat and Mass Transfer. [S.1.]: Wiley, 2012. Citado
na pagina 83.

IRVINE, H. M. Cable Structures. [S.1.]: MIT press, 1981. Citado na pagina 37.

JAN, K. et al. Ultra high-pressure risers for deepwater drilling. 2010. Disponivel
em: <http://www.offshore-mag.com/articles/print/volume-70 /issue-3/drilling-
_completion /ultra-high-pressure-risers-for-deepwater-drilling.html>. Citado na pégina

84.

KOLMOGOROV, A. N.; FOMIN, S. Elements of the Theory of Functions and Functional
Analysis. [S.1.]: Dover Publications, 1999. Citado na pagina 114.

KOLMOGOROV, A. N.; FOMIN, S. V. Introductory Real Analysis. [S.1.]: Prentice-Hall,
1970. Citado na pagina 27.

http://www.windows2universe.org/earth/Water/temp.html
http://www.windows2universe.org/earth/Water/temp.html
http://www.brederoshaw.com/solutions/images/illustration_pip.jpg
http://www.brederoshaw.com/solutions/images/illustration_pip.jpg
http://www.cplusplus.com/reference/
http://www.cplusplus.com/reference/
http://libmesh.github.io
http://libmesh.github.io
http://www.offshore-mag.com/articles/print/volume-70/issue-3/drilling-__completion/ultra-high-pressure-risers-for-deepwater-drilling.html
http://www.offshore-mag.com/articles/print/volume-70/issue-3/drilling-__completion/ultra-high-pressure-risers-for-deepwater-drilling.html

122 Referéncias

KYRIAKIDES, S. Buckle propagation in pipe-in-pipe systems. part i. experiments.
Pergamon, International Journal of Solids and Structures, n. 39, p. 351-366, 2002. Citado
na pagina 23.

KYRIAKIDES, S.; VOGLER, T. J. Buckle propagation in pipe-in-pipe systems. part ii.
analysis. Pergamon, International Journal of Solids and Structures, n. 39, p. 367-392,
2002. Citado na péagina 23.

LANGPOP.COM. Normalized Comparison. 2014. Webpage. Disponivel em:
<http://langpop.com>. Acesso em: 08 ago. 2014. Citado na péagina 67.

MONTANO, A.; RESTELLI, M.; SACCO, R. Numerical simulation of tethered buoy
dynamics using mixed finite elements. ELSEVIER, Computer Methods in Applied
Mechanics Engineering, n. 196, p. 4117-40129, 2007. Citado na pagina 50.

OPEN MPI - Message Passing Interface. 2014. Webpage. Disponivel em: <http://www-
.open-mpi.org/>. Acesso em: 18 set. 2014. Citado na pagina 66.

PESCE, C. P.; MARTINS, C. A.; CHAKRABARTI, S. Numerical Modelling in
Fluid-Structures Interactions: Numerical computational of riser dynamics. [S.1.]: WIT
PRESS, 2005. p. 253-309 p. Citado 4 vezes nas paginas 21, 41, 74 e 95.

PETSC - Portable Extensible Toolkitfor for Scientific Computation. 2014. Webpage.
Disponivel em: <www.mcs.anl.gov/petsc/>. Acesso em: 20 set. 2014. Citado na pagina
66.

POETAG60. Continuo di Cauchy. 2014. Webpage. Disponivel em: <http://it.wikipedia-
.org/wiki/Continuo_di_Cauchy>. Acesso em: 28 jul. 2014. Citado na pagina
101.

PRATA, S. C++ Primer Plus. 6. ed. [S.1.]: Addison-Wesley, 2012. Citado na pagina 66.

QUARTERONTI, A. Modellistica numerica per problemi differenziali. 4. ed. [S.1.]: Springer,
2008. Citado na pagina 35.

RUDIN, W. Real and Complex Analysis. [S.1.]: McGraw-Hill, 1986. Citado na pagina 111.

RUDIN, W. FUNCTIONAL ANALYSIS. [S.1.]: McGraw-Hill, Inc., 1991. Citado na
pagina 27.

SACCO, R. AN INTRODUCTION TO MIXED AND HYBRID FINITE ELEMENT
METHODS IN COMPUTATIONAL FLUID-MECHANICS. [S.1.], 2007. Citado na
pagina 51.

SALSA, S. Equazioni a derivate parziali - Metodi, modelli e applicazioni. 2. ed. [S.L]:
Springer, 2010. Citado 2 vezes nas paginas 27 e 109.

SALSA, S. Elasticita lineare. [S.1.], 2014. Citado na pagina 105.

SANTOS, H. A. F. A.; ALMEIDA, C. I. On a pure complementary energy principle
and a force-based finite element formulation for non-linear elastic cables. ELSEVIER,

International Journal of Non-Linear Mechanics, n. 46, p. 395-406, 2011. Citado na
pagina 37.

http://langpop.com
http://www.open-mpi.org/
http://www.open-mpi.org/
http://it.wikipedia.org/wiki/Continuo_di_Cauchy
http://it.wikipedia.org/wiki/Continuo_di_Cauchy

Referéncias 123

VIEIRA, P. A practical introduction to finite element programming using libMesh. [S.1.],
2009. Disponivel em: <http://ptmat.fc.ul.pt/ pvieira/libmesh/>. Citado na pagina 67.

YOSIDA, K. Functional Analysis. [S.1.]: Springer-Verlag, 1974. Citado na pagina 109.

http://ptmat.fc.ul.pt/~pvieira/libmesh/

Apéndices

APENDICE A - Cédigos

Os co6digos sao organizados em duas partes com trés codigos para cada uma.

Na primeira parte sao expostos os codigos do problema local: o primeiro é o cédigo
do problema da difusao de temperatura, o segundo o problema estrutural em auséncia dos
efeitos térmicos e o terceiro a juncao dos dois problemas. Note que no terceiro codigo a
parte correspondente ao problema de difusao é exatamente igual ao primeiro codigo. Para
o problema estrutural é presente uma parcela de carregamento a mais na solu¢ao do campo
de deflexdes e uma parcela de deformacao aneldstica que entra no calculo das tensoes.
Ambos esses novos fatores sao computados a partir da distribuicdo de temperatura que

provém da solucao do problema de difusao.

Na segunda parte sdo expostos os cddigos referentes a etapa global: no primeiro
é presente a implementacao do header das classes desenvolvidas com os prototipos de
todas as fungdes e métodos principais, no segundo sao definidos os métodos e fungoes e os
algoritmos principais e no terceiro é presente um possivel exemplo de um main que utilize

as classes desenvolvidas.

Como INPUTS dinamicos o problema local possui somente pardmetros numéricos
como a dimensao do problema, o tipo resolutor dos sistemas lineares, a ordem de apro-
ximagao (primiera ou segunda) e o nimero de processores a serem utilizados no caso de
paralelizagao. Esses parametros sao configurados diretamente da linha de comando no

lancamento do executavel.

A parte global, além dos pardmetros numéricos ja mencionados possui outros
referentes ao método de Newton como tolerancias e niimero maximo de iteragoes a ser
ajustados diretamente da linha de comando. Além disso, o executavel também precisa
de um file chamado “data_input.txt” onde é feita a leitura dos parametros fisicos do

problema (comprimento do cabo, velocidade de corrente, etc).

A.1 Coddigo do problema de difusao de temperatura

APENDICE A. Cédigos

//
//

// CH include files

#include
#include
#include
#include

// Basic
#include
#include
#include
#include
#include
#include
#include

<iostream>
<algorithm>
<math . h>
<set>

that we need

include file needed for the mesh functionality .
"libmesh /libmesh .h'
"libmesh /mesh.h"

"libmesh /mesh generation.h'

"libmesh /ex

odusIl io.h"

"libmesh /gnuplot io.h'

"libmesh /linear implicit_system .h'

"libmesh /equation systems.h'

// Define the Finite Element object, quadrature rule and dof map

indexing handling.
#include "libmesh/fe.h"
#include "libmesh/quadrature_gauss.h'
#include "libmesh/dof map.h"

// Define useful datatypes for finite element

// matrix and vector components.

#include
#include
#include
#include

"libmesh /sparse matrix.h'

"libmesh /numeric_ vector.h'

"libmesh /dense matrix.h'

"libmesh /de

nse vector.h'

// Define the PerfLog, a performance logging utility .

// It is

useful for

timing events in a code and giving

// you an idea where bottlenecks lie.
#include "libmesh/perf log.h'

// The definition of a geometric element
#include '"libmesh/elem.h'

A.1. Cédigo do problema de difusdo de temperatura

// To impose Dirichlet boundary conditions
#include '"libmesh/dirichlet_boundaries.h'
#include "libmesh/analytic function.h'
#include 'libmesh/string to enum.h'
#include '"libmesh/getpot.h'

// Bring in everything from the libMesh namespace
using namespace libMesh;

using namespace std;

//error function
void error (string & str){
cerr<<str<<endl;

exit (1);
// Function prototype. This is the function that will assemble
// the linear system for our problem. Note that the

// function will take the EquationSystems object and the
// name of the system we are assembling as input. From the
// EquationSystems object we have acess to the Mesh and

// other objects we might need.

void assemble_tempdiff(EquationSystems & es,const string &

system_name) ;

// Exact function prototype for temperature.
Real T_dirichlet (const Real x,const Real y);

// Exact value of conductivity constant (function of material)
Real k_cond (const Real x);

// Define a wrapper for exact_solution that will be needed below
void exact_solution_wrapper (DenseVector<Number> & output, const
Point & p, const Real);

4 APENDICE A. Cédigos

// Begin the main program.
int main (int argc, charkx argv)
// Initialize libMesh and any dependent libaries , like in
example 2.

LibMeshInit init (argc, argv);

// Declare a performance log for the main program

// PerfLog perf main ("Main Program') ;

// Create a GetPot object to parse the command line

GetPot command_line (argc, argv);

// Check for proper calling arguments.
if (arge < 3)
{
if (init.comm().rank() = 0)
cerr << 'Usage:\n'
<<"\t," << argv[0] << " —d 1(2)" << " —n 15"
<< endl;

// This handy function will print the file name, line
number ,

// and then abort. Currrently the library does not use
G+

// exception handling.

libmesh_error () ;

// Brief message to the user regarding the program name
// and command line arguments.

else

{

"

cout << "Running ' << argv[0];

for (int i=1; i<argc; i++)
cout << " " << argv[i];

cout << endl << endl;

Al

Cédigo do problema de difusdo de temperatura 5

// Read problem dimension from command line. Use int

// instead of unsigned since the GetPot overload is
ambiguous

// otherwise.

int dim = 2;

if (command line.search (1, "—d"))

dim = command_line.next (dim);

// Skip higher—dimensional examples on a lower—dimensional
libMesh build
libmesh example assert (dim <= LIBMESH DIM, '2D/3D support");

// Create a mesh with user—defined dimension.
// Read number of elements from command line
int ps = 15;

if (command line.search (1, "-n"))

ps = command_line.next (ps);

// Read FE order from command line
string order = "SECOND";
if (command line.search (2, "—Order", '—0"))

order = command_line.next (order);

// Read FE Family from command line
string family = "LAGRANGE'";
if (command_line.search (2, "-FEFamily", '—f"))

family = command_line.next (family);

// Cannot use discontinuous basis.
if ((family = "MONOMIAL") || (family = "'XYZ"))
{
if (init.comm().rank() = 0)
cerr << "ex4 currently requires a C 0. (or higher) FE
o basis." << endl;

libmesh error () ;

APENDICE A. Cédigos

// Create a mesh, with dimension to be overridden later ,
distributed
// across the default MPI communicator.

Mesh mesh(init .comm());

// Use the MeshTools:: Generation mesh generator to create a
uniform

// grid on the square [—1,1]"D. We instruct the mesh
generator

// to build a mesh of 8x8 \p Quad9 elements in 2D, or \p
Hex27

// elements in 3D.

//Problem domain

const Real R_i = 0.12;
const Real R e = 0.30;
const Real ti = 0.020;
const Real te = 0.018;
const Real L = 10;

Real halfwidth = dim > 1 7 1. : 0.;
Real halfheight = dim > 2 ? 1. : 0.

if ((family = '"LAGRANGE") && (order = "FIRST"))
{
// No reason to use high—order geometric elements if we
are
// solving with low—order finite elements.
MeshTools :: Generation :: build__cube (mesh,
ps,
(dim>1) 7 ps : O,
(dim>2) 7 ps : O,
R_i, R e,
0, L,
—halfheight |
halfheight ,

A.1. Cédigo do problema de difusdo de temperatura

(dim==1) ? EDGE2 :
((dim = 2) ? QUAD4 :
HEXS))

Y

else

MeshTools :: Generation :: build__cube (mesh,
ps,
(dim>1) ? ps : 0,
(dim>2) 7 ps : 0,
R i, R e,
0, L,

—halfheight |
halfheight ,
(dim==1) ? EDGE3
((dim = 2) 7 QUAD9 :

HEX27)) ;

// Print information about the mesh to the screen.

mesh. print__info () ;

// Create an equation systems object.

EquationSystems equation_systems (mesh);

// Declare the system and its variables.
// Create a system named "Diffusion'
LinearImplicitSystem& system =

n

equation systems.add system<LinearImplicitSystem> (
Diffusion");

// Add the variable "T" to "Diffusion". '"T'
// will be approximated using second—order approximation.

unsigned int T_ var = system.add variable('T",

APENDICE A. Cédigos

Utility ::
string_ to__enum<

Order> (order)

bl

Utility ::
string_to__enum<
FEFamily>(family

)

// Give the system a pointer to the matrix assembly
// function.

system.attach assemble function (assemble tempdiff);
// Construct a Dirichlet boundary condition object

// Indicate which boundary IDs we impose the BC on
// We either build a line, a square or a cube, and
// here we indicate the boundaries IDs in each case

set <boundary_id_type> boundary_ids;
// the dim==1 mesh has two boundaries with IDs 0 and 1

if (dim==1){
boundary ids.insert (0);
boundary_ids.insert (1);

// the dim==2 mesh has four boundaries with IDs 0, 1, 2 and
3
if (dim>=2)
{
boundary_ids.insert (1);
boundary ids.insert (3);

// Program made for 1D or 2D dimensions
if (dim>2)
{

string s1('Code supports just 1D and 2D problems!");

Al

Cédigo do problema de difusdo de temperatura 9

error (sl);

// Create a vector storing the variable numbers which the BC
applies to
vector<unsigned int> variables (1);

variables [0] = T_var;

// Create an AnalyticFunction object that we use to project
the BC

// This function just calls the function exact_ solution via
exact_solution_wrapper

AnalyticFunction<> exact__solution_object (

exact_solution_wrapper);

DirichletBoundary dirichlet_bc (boundary_ids,
variables ,

&exact__solution__object);

// We must add the Dirichlet boundary condition _ before
// we call equation systems.init ()

system.get__dof map().add_dirichlet_boundary(dirichlet_ bc);

// Initialize the data structures for the equation system.

equation_systems.init ();

// Print information about the system to the screen.
equation_systems.print_info () ;

mesh. print__info () ;

// Solve the system "Diffusion'

system . solve () ;

// After solving the system write the solution
// to a GMV-formatted plot file.

if (dim = 1)

{

10 APENDICE A. Cédigos

GnuPlotIO plot (mesh,"Distribuzione, di temperatura,,
radiale , 1D" ,GnuPlotIO ::GRID_ON) ;
plot . write equation systems("gnuplot script',
equation_systems) ;
}
#ifdef LIBMESH HAVE EXODUS API
else
{
Exodusll_IO (mesh).write_equation_systems ((dim = 3) 7
"out 3.e"

out_ 2.e",

equation_ sy

) ;
}
#endif // #ifdef LIBMESH HAVE EXODUS API

// All done.

return 0;

// We now define the matrix assembly function for the
// Diffusion system. We need to first compute element
// matrices and right—hand sides, and then take into
// account the boundary conditions.

void assemble tempdiff(EquationSystems& es

const string& system_name)

// It is a good idea to make sure we are assembling
// the proper system.

libmesh assert__equal_to (system_name, "Diffusion");

// Declare a performance log. Give it a descriptive
// string to identify what part of the code we are
// logging , since there may be many PerfLogs in an
// application.

PerfLog perf log ('Matrix Assembly");

"

stems

Al

Cédigo do problema de difusdo de temperatura 11

// Get a constant reference to the mesh object.

const MeshBase& mesh = es.get_mesh () ;

// The dimension that we are running

const unsigned int dim = mesh.mesh_dimension () ;

// Get a reference to the LinearImplicitSystem we are
solving

LinearImplicitSystem& system = es.get system<
LinearImplicitSystem >("Diffusion");

// A reference to the \p DofMap object for this system. The
\p DofMap

// object handles the index translation from node and
element numbers

// to degree of freedom numbers. We will talk more about
the \p DofMap

// in future examples.

const DofMap& dof map = system.get dof map();

// Get a constant reference to the Finite Element type
// for the first (and only) variable in the system.

FEType fe type = dof map.variable type(0);

// Build a Finite Element object of the specified type.
Since the

// \p FEBase:: build () member dynamically creates memory we
will

// store the object as an \p AutoPtr<FEBase>. This can be
thought

// of as a pointer that will clean up after itself.

AutoPtr<FEBase> fe (FEBase:: build (dim, fe_ type));

// A 5th order Gauss quadrature rule for numerical
integration .

QGauss qrule (dim, FIFTH);

12

APENDICE A. Cédigos

// Tell the finite element object to use our quadrature rule
fe—attach_quadrature_rule (&qrule);

// Declare a special finite element object for
// boundary integration .
AutoPtr<FEBase> fe_face (FEBase::build (dim, fe_ type));

// Boundary integration requires one quadraure rule

// with dimensionality one less than the dimensionality
// of the element.

QGauss qface (dim—1, FIFTH) ;

// Tell the finte element object to use our
// quadrature rule.

fe_face—attach_quadrature_rule (&qface);

// Here we define some references to cell—specific data that

// will be used to assemble the linear system.

// We begin with the element Jacobian * quadrature weight at
each

// integration point.

const vector<Real>& JxW = fe—>get_ JxW () ;

// The physical XY locations of the quadrature points on the
element .

// These might be useful for evaluating spatially varying
material

// properties at the quadrature points.

const vector<Point>& q_point = fe—>get xyz();

// The element shape functions evaluated at the quadrature
points.

const vector<vector<Real> >& phi = fe—>get_phi();

// The element shape function gradients evaluated at the
quadrature

// points.

const vector<vector<RealGradient> >& dphi = fe—>get_dphi();

Al

Cédigo do problema de difusdo de temperatura 13

// Define data structures to contain the element matrix
// and right—hand—side vector contribution. Following
// basic finite element terminology we will denote these
// "Ke" and "Fe'. More detail is in example 3.
DenseMatrix<Number> Ke;

DenseVector<Number> Fe;

// This vector will hold the degree of freedom indices for
// the element. These define where in the global system
// the element degrees of freedom get mapped.

vector<dof id_type> dof_indices;

// Now we will loop over all the elements in the mesh.

// We will compute the element matrix and right—hand—side

// contribution .

MeshBase:: const element iterator el = mesh.
active_ local elements_begin ();

const MeshBase:: const element iterator end el = mesh.

active local elements_ end();

for (; el != end el; ++el)
// Start logging the shape function initialization .
// This is done through a simple function call with
// the name of the event to log.

perf log.push("elem init");

// Store a pointer to the element we are currently
// working on. This allows for nicer syntax later.

const Elemx* elem = xel;

// Get the degree of freedom indices for the

// current element. These define where in the global
// matrix and right—hand—side this element will

// contribute to.

dof map.dof indices (elem, dof indices);

// Compute the element—specific data for the current

14

APENDICE A. Cédigos

// element. This involves computing the location of the
// quadrature points (q_point) and the shape functions
// (phi, dphi) for the current element.

fe—>reinit (elem):;

// Zero the element matrix and right—hand side before

// summing them. We use the resize member here because

// the number of degrees of freedom might have changed
from

// the last element. Note that this will be the case if
the

// element type is different (i.e. the last element was
a

// triangle , now we are on a quadrilateral).

Ke.resize (dof_indices.size ()

dof_indices.size ());

?

Fe.resize (dof_indices.size());

// Stop logging the shape function initialization .
// If you forget to stop logging an event the PerfLog
// object will probably catch the error and abort.

perf log.pop("elem init");

// Now we will build the element matrix. This involves

// a double loop to integrate the test funcions (1)
against

// the trial functions (j).

//

// We have split the numeric integration into two loops

// so that we can log the matrix and right—hand—side

// computation seperately .

//

// Now start logging the element matrix computation

perf log.push ('"Ke');
for (unsigned int qp=0; gp<qrule.n_points(); qp++){

const Real x = q_point[qp](0)5

A.1. Cédigo do problema de difusdo de temperatura 15

for (unsigned int i=0; i<phi.size(); i++)
for (unsigned int j=0; j<phi.size(); j++)
Ke(i,j) += JxW|[qp]*(x*k_cond(x)*dphi[i][qp]x
dphi[j][ap]);

// Stop logging the matrix computation

perf log.pop ('Ke");
// Now we build the element right—hand—side contribution

// This involves a single loop in which we integrate the

// "forcing function" in the PDE against the test
functions.

//

// Start logging the right—hand—side computation

perf log.push ("Fe');

// Null right hand side
for (unsigned int i=0; i<phi.size(); i++)
Fe(i) 4= 0;

// Stop logging the right—hand—side computation

perf_log.pop ('Fe'");

// 1f this assembly program were to be used on an
adaptive mesh,

// we would have to apply any hanging node constraint
equations

// Also, note that here we call
heterogenously constrain_ element matrix_ and_vector

// to impose a inhomogeneous Dirichlet boundary
conditions.

dof map.

heterogenously constrain_element_ matrix_and_vector (

16 APENDICE A. Cédigos

Ke, Fe, dof_indices);

// The element matrix and right—hand—side are now built

// for this element. Add them to the global matrix and

// right—hand—side vector. The \p SparseMatrix::
add_matrix ()

// and \p NumericVector::add_ vector() members do this
for us.

// Start logging the insertion of the local (element)

// matrix and vector into the global matrix and vector

perf log.push ("matrix insertion");

system . matrix—>add__matrix (Ke, dof_indices);

system.rhs—>add_vector (Fe, dof_indices);

// Start logging the insertion of the local (element)
// matrix and vector into the global matrix and vector

perf log.pop ('"matrix insertion");

// That’s it. We don’t need to do anything else to the
// PerfLog. When it goes out of scope (at this function
return)

// it will print its log to the screen.

// Exact function prototype for temperature in the boundary.
Real T dirichlet (const Real x,const Real y = 0.){

const Real R i = 0.12;
const Real R e = 0.30;
const Real L = 10;

//linear change on external temperature with gradient equal
to the max

//verified in ocean conditions

if (x = R_i)

return 95;

A.1. Cédigo do problema de difusdo de temperatura

17

else if (x = R_e)
return 10 4+ 0.1xy;

else{
string sl1('Function /T _dirichlet, called for x out of,
domain, bonds!");

error (sl);

//function that define material conductivity
Real k cond (const Real x){
//steel inner and outer conductivity constant
const Real k_inner_ steel = 50;

const Real k_ outer steel = 50;

//insulation conductivity constant

const Real k_insulation = 0.16;

//overall internal and external radius
const Real R_i = 0.12;
const Real R e = 0.30;

//internal and external steel pipe thickness
const Real ti = 0.020;
const Real te = 0.018;

//insulation thickness

const Real t ins =R e— R i— ti — te;

if (x>= R i&k x <= R_itti)

return k_inner_steel;

else if (x > R_i+ ti & x < R_e-te)

return k_insulation;

18 APENDICE A. Cédigos

else if (x >>= R e — te & x <= R_e)

return k_outer_ steel;

else{
string sl ('Function k_cond called, for x out of domain

bonds!");

error (sl);

void exact_solution_wrapper (DenseVector<Number> & output, const

Point & p, const Real){

const Real R i = 0.12;
const Real R_e = 0.30;

output (0) = T dirichlet (p(0), (LIBMESH DIM>1)7p(1):0);

A.2 Cédigo do problema estrutural sem efeitos térmicos

#include <iostream>
#include <algorithm>
#include <math.h>
#include <fstream>

#include <iomanip>

A.2. Cédigo do problema estrutural sem efeitos térmicos

19

// libMesh includes

#include '"libmesh/libmesh.h'

#include "libmesh/mesh.h'

#include '"libmesh/mesh generation.h'
#include 'libmesh/exodusIl io.h'
#include '"libmesh/gnuplot io.h'
#include '"libmesh/linear implicit_system .h"
#include "libmesh/equation_ systems.h'
#include '"libmesh/fe.h'

#include "libmesh/quadrature gauss.h'
#include "libmesh/dof map.h"

#include "libmesh/sparse matrix.h"
#include 'libmesh/numeric_vector.h'
#include "libmesh/dense matrix.h'
#include '"libmesh/dense submatrix.h'
#include '"libmesh/dense vector.h'
#include "libmesh/dense_subvector.h'
#include '"libmesh/perf log.h'
#include "libmesh/elem.h'

#include '"libmesh/boundary info.h'
#include 'libmesh/zero function.h’
#include '"libmesh/dirichlet boundaries.h’
#include 'libmesh/string to enum.h'
#include "libmesh/getpot.h"

//Handling errors

void error (std::string & str){
std :: cerr<<str<<std :: endl;
exit (1);

// Bring in everything from the libMesh namespace

using namespace libMesh;

//Problem geometric parameters:
inline Real R_i(){ return 0.12; }
inline Real R_e(){ return 0.30; }

20 APENDICE A. Cédigos

inline Real t_i(){ return 0.02; }
inline Real t_e(){ return 0.018; }
inline Real Length(){ return 10.0; }

//Problem materials parameters:

Real mu (const Real x);

Real lambda (const Real x);

Real rho (const Real x);

//Problem Newmann b.c:

Real N_section (const Real x);

Real PressurexR (const Real x,const Real y);

//Golbal problem input
Real N_global (const Real x);

// Matrix and right—hand side assemble
void assemble elasticity (EquationSystems& es

const std::string& system name);
void compute stresses(EquationSystems& es);

// Begin the main program.
int main (int argc, chars* argv)

{

// Initialize libMesh and any dependent libaries

LibMeshInit init (argc, argv);
GetPot command_line (argc, argv);

// Initialize the cantilever mesh

const unsigned int dim = 2;

// Skip this 2D example if libMesh was compiled as 1D-only.

A.2. Cédigo do problema estrutural sem efeitos térmicos

21

//libmesh example_ assert(dim <= LIBMESH DIM, "2D support");
int psr = 50;
if (command_ line.search (1, "-nx"))

psr = command_line.next (psr);

int psl = 50;
if (command_line.search (1, "-ny"))

psl = command_line.next (psl);

// Read FE order from command line

std :: string order = "SECOND";

if (command_line.search(2, "—Order", "—o0"))
order = command_line.next (order);

std :: cout<<'"order: '<<order<<std::endl;

// Create a 2D mesh distributed across the default MPI
communicator.

Mesh mesh(init.comm(), dim);

if ((order = "FIRST")){
MeshTools :: Generation :: build square (mesh,
psr, psl,
R_i(), R_e(),
0., Length(),

QUAD4) ;
}
else{
MeshTools :: Generation :: build__square (mesh,
psr, psl,

R_i(), R_e(),
0., Length(),
QUAD9) ;

// Print information about the mesh to the screen.

mesh. print_info () ;

22

APENDICE A. Cédigos

// Create an equation systems object .

EquationSystems equation systems (mesh);

// Declare the system and its variables.

// Create a system named "Elasticity'
LinearImplicitSystem& system =

"

equation_systems.add_system<LinearImplicitSystem> (
Elasticity");

// Add two displacement variables, u and v, to the system

unsigned int u_var = system.add_ variable('u', Utility ::
string_to__enum<Order> (order), LAGRANGE) ;
unsigned int v_var = system.add_variable("v"', Utility ::

string_to__enum<Order> (order), LAGRANGE) ;

system.attach assemble_ function (assemble elasticity);

// Construct a Dirichlet boundary condition object
// We impose a "clamped"' boundary condition on the
// "lowear"' and "upper' boundaries, i.e. bc_id = 0,2
std :: set<boundary id type> boundary ids;
boundary_ids.insert (0);

//boundary ids.insert (2);

// Create a vector storing the variable numbers which the BC
applies to
std :: vector<unsigned int> variables (2);

variables [0] = u_var; variables[1l] = v_var;

// Create a ZeroFunction to initialize dirichlet bec

ZeroFunction<> zf;

DirichletBoundary dirichlet bc (boundary ids,
variables ,

&zf);

A.2. Cédigo do problema estrutural sem efeitos térmicos 23

// We must add the Dirichlet boundary condition _ before
// we call equation_systems.init ()

system.get_dof map().add dirichlet _boundary(dirichlet bc);

// Also, initialize an ExplicitSystem to store stresses
ExplicitSystem& stress_system =
equation_systems.add_system<ExplicitSystem> ('StressSystem")

Y

stress_system.add_ variable("sigma rr", CONSTANT, MONOMIAL) ;
stress_system.add_variable("sigma zz", CONSTANT, MONOMIAL) ;
stress_system .add_variable("sigma rz", CONSTANT, MONOMIAL) ;
stress_system.add variable("sigma theta', CONSTANT, MONOMIAL) ;
stress_system.add_variable("vonMises", CONSTANT, MONOMIAL) ;

// Initialize the data structures for the equation system.

equation_systems.init ();

// Print information about the system to the screen.

equation_systems.print_info ();

// Solve the system

system.solve () ;

// Post—process the solution to compute the stresses

compute_stresses(equation_systems);

// Plot the solution
#ifdetf LIBMESH HAVE EXODUS API
// Use single precision in this case (reduces the size of the
exodus file)

Exodusll_I0 exo_io(mesh, /«single precision=+/true);

// First plot the displacement field using a nodal plot
std ::set<std ::string> system_names;

system_names. insert (' Elasticity");

24 APENDICE A. Cédigos

exo_io.write_equation_systems('"displacement and stress.exo',

equation_systems ,&system_names) ;

// then append element—based discontinuous plots of the
stresses
exo_io.write_element_data(equation_systems);
#endif // #ifdef LIBMESH HAVE EXODUS API

// All done.

return 0;

Real mu (const Real x){
//steel inner and outer constants
const Real E_pipe_mod = 2ell;

const Real poisson_ pipe _mod = 0.3;

//mu pipe
const Real mu p = E_pipe _mod/(2%(1+poisson_pipe_mod));

//insulation constants
const Real E ins mod = 5e9;

const Real poisson ins mod = 0.4;

const Real mu i = E_ins mod/(2*(1+poisson_ins_mod));

if (x> R i() & x<=R_i()+t_i())

return mu p;

else if (x> R_i() + t_i() & x < R _e()—t_e())

return mu_ij;

else if (x>=R e() — t_e() & x <=R_¢e())

return mu p;

A.2. Cddigo do problema estrutural sem efeitos térmicos

else{
std::string sl ("Function mu, called for x out of domain
bonds!");

error (sl);

Real lambda (const Real x){
const Real E_pipe mod = 2ell;

const Real poisson_ pipe_mod = 0.3;

const Real lambda_p = (E_pipe_mods*poisson_pipe_mod) /((1+

poisson_ pipe_mod)*(1—2%poisson_pipe_mod)) ;

const Real E ins mod = 5e9;
const Real poisson ins mod = 0.4;
const Real lambda_ i = (E_ins modxpoisson_ins_mod) /((1+

poisson_ins_mod)*(1—2%poisson_ins_mod));

if (x> R _i() & x<=R_i()+t_i())
return lambda_p;

else if (x> R _i() + t_i() & x < R_e()—t_e())
return lambda_i;

else if (x >= R e() — t_e() & x <=R_e())
return lambda_ p;

26

APENDICE A. Cédigos

else{

std::string s1('"Function lambda called for x out of

domain bonds!");

error (sl);

Real rho (const Real x){
//steel inner and outer constants

const Real rho_pipe = 8000;

const Real rho ins = 1300;

if (x>=R_i() & x <= R_i()+t_i())

return rho_ pipe;

else if (x >R _i() +t_ i() & x < R e()—t_e())

return rho_ins;

else if (x>=R e() — t_e() & x <= R _¢e())

return rho_pipe;

else{

std::string s1("Function rho called for x out of domain,,

bonds!");

error (sl);

A.2. Cédigo do problema estrutural sem efeitos térmicos 27

Real PressurexR (const Real x,const Real y = 0.){

//linear change on external temperature with gradient equal
to the max
//verified in ocean conditions
if (x =R _i())
return —R_i()*(104e6 — 10500x%y); //104cC —

else if (x = R_e())
return R_e()*(1.5e7 — 10000x*y) ;

else{
std ::cerr<<'x = '<<x<<"y = "'<<y<<std ::endl;
std::string s1("Function, PressurexR called for x out of,
domain, bonds!");

error (sl);

}

void assemble elasticity (EquationSystems& es

const std::string& system_name)

//making sure we will assemble the right system

libmesh assert_equal_ to (system_ name, 'Elasticity");

//getting the mesh reference

const MeshBase& mesh = es.get_mesh();

//getting dimension of the system

const unsigned int dim = mesh.mesh dimension () ;

28

APENDICE A. Cédigos

LinearImplicitSystem& system = es.get system<

LinearImplicitSystem >(" Elasticity ");

//getting the variable numbers
const unsigned int u_var = system.variable _number ('u');

const unsigned int v_var = system.variable _number ('v");

//getting dof map and the fe type (both variables have the
same type otherwise need to be changed)

const DofMap& dof map = system.get dof map();

FEType fe type = dof map.variable type(0);

//having a "dynamic" pointer of the prescribed type, getting
default quadrature order

AutoPtr<FEBase> fe (FEBase::build (dim, fe type));

QGauss qrule (dim, fe_ type.default_quadrature_order());

fe—attach quadrature rule (&qrule):;

//same for boundary elements

AutoPtr<FEBase> fe face (FEBase::build (dim, fe_ type));
QGauss qface(dim—1, fe_ type.default quadrature_order());
fe_face—>attach_quadrature_rule (&qface);

//jacobian and quadrature weights for numeric integration (
taken in the quadrature points)

const std::vector<Real>& JxW = fe—>get JxW () ;

const std::vector<std::vector<Real> >& phi = fe—>get_phi();

const std::vector<std::vector<RealGradient> >& dphi = fe—

get_dphi();

const std::vector<Point>& q_point = fe—>get_xyz();

DenseMatrix<Number> Ke;
DenseVector<Number> Fe;

//Submatrix for handling

A.2. Cddigo do problema estrutural sem efeitos térmicos

29

DenseSubMatrix<Number>
Kuu(Ke) , Kuv(Ke),
Kvu(Ke), Kvv(Ke);

DenseSubVector<Number>
Fu(Fe) ,
Fv(Fe);

std :: vector<dof id_ type> dof indices;
std :: vector<dof id type> dof indices u;
std :: vector<dof_ id_type> dof_ indices_ v;

MeshBase :: const element iterator el = mesh.
active_ local elements_ begin () ;
const MeshBase:: const element iterator end el = mesh.

active local elements end();

for (; el != end el; ++el)

{

const Elemx elem = xel;

dof map.dof indices (elem, dof indices);
dof map.dof indices (elem, dof indices u, u_var);

dof _map.dof_indices (elem, dof indices_ v, v_var);

const unsigned int n_dofs = dof indices.size();
const unsigned int n_u_dofs = dof_ indices_u.size ();
const unsigned int n_v_dofs = dof_ indices_v.size ();

fe—>reinit (elem);

Ke.resize (n_dofs, n_dofs);

Fe.resize (n_dofs);

Kuu.reposition (u_varxn_u_dofs, u_varxn_u_dofs, n_u_dofs,

n_u_dofs);

30 APENDICE A. Cédigos

Kuv.reposition (u_varxn_u_dofs, v_varsn_u_dofs, n_u_dofs,

n_v_dofs);

Kvu.reposition (v_varxn_u_dofs, u_varsn_v_dofs, n_v_dofs,
n_u_dofs) ;
Kvv.reposition (v_varxn_u_ dofs, v_var«n_ u_ dofs, n_v_dofs,

n_v_dofs);

Fu.reposition (u_varsn_u_dofs, n_u_dofs);

Fv.reposition (v_var«n_ u_ dofs, n_v_dofs);

for (unsigned int qp=0; gp<qrule.n_points(); qp++)

{

const Real x = q_point[qp](0);
const Real y = q_point[qp](1);

for (unsigned int i=0; i<n_u_dofs; i++){
for (unsigned int j=0; j<n_u_dofs; j++)

{

Kuu(i,j) += JxW[qp|*2xmu(x)s*x*dphi[j]|[qp](0)=*dphi]
i][ap](0);

Kuu(i,j) += (JxW{[qp]*2*mu(x)*phi[j][qp]*phi[i][ap

1) /x;

Kuu(i,j) += JxW[qp|*2xmu(x)*x*dphi[j][qp](1)=*dphi]
i lap](1);

Kuu(i,j) += xW[gp]*lambda (x)*xxdphi[j][qp](0)x*
dphi[i][ap](0);

Kuu(i,j) += JxW[qp]*lambda(x)*dphi[j]|[qp](0)*phi[i
Jlap];

A.2. Cddigo do problema estrutural sem efeitos térmicos 31

Kuu(i,j) 4= JxW|[qp|*lambda(x)*phi[j]|[qp]*xdphi[i]]
qp](0);

Kuu(i,j) += (JxW][qgp|*lambda(x)*phi[j]|[qp]*phi[i]]
qp]) /x;

}
for (unsigned int i=0; i<n_u_dofs; i++)
for (unsigned int j=0; j<n_v_dofs; j++)

{

Kuv(i,j) += JxW[qp]*2*mu(x)=*x*xdphi[j]|[qp](0)=*dphi]
i lap](1);

Kuv(i,j) 4= JxW[qp]*lambda (x)*x*xdphi[j][qp](1)*
dphi[i][ap](0);

Kuv(i,j) 4= JxW]qgp|*lambda(x)*dphi[j][qp](1)=phi]
i]lap];

for (unsigned int i=0; i<n_v_dofs; i++)
for (unsigned int j=0; j<n_ u_ dofs; j++)

{

Kvu(i,j) += JxW/[qp|*2«mu(x)*x+*dphi[j][qp](1)=x*
dphi[i][ap](0);

Kvu(i,j) += JxW]qgp]*lambda (x)*x*dphi[j]|[qp](0) *

for (unsigned int i=0; i<n_v_dofs; i++)

32 APENDICE A. Cédigos

for (unsigned int j=0; j<n_v_dofs; j++)

{
Kvv(i,j) 4= JxXW[qp]*(2*mu(x)+lambda(x))*xxdphi[j]]|
qp] (1) *dphi[i][qp](1);
Kvv(i,j) 4= xXW[qp]*2*mu(x)=*x*xdphi[j][qp](0)=*dphi|
i][ap](0);
}

for (unsigned int side=0; side<elem—>n_sides(); side++)
if (elem—>neighbor(side) == NULL)
{
const std::vector<std::vector<Real> >& phi_ face =
fe_face—>get_phi();
const std::vector<Real>& JxW face = fe face—>
get_ JxW () ;
const std::vector<Point>& q_ point face = fe face—>

get xyz();

fe_face—>reinit (elem, side);

if (!'mesh.boundary info—>has_ boundary id (elem,
side, 0) && !mesh.boundary info—>
has_ boundary_ id (elem, side, 2))

for (unsigned int qp=0; gp<qface.n_points(); qp
++)

const Real x = q_point_face[qp](0) ;
const Real y = q_point_face[qp]|(1);

A.2. Cédigo do problema estrutural sem efeitos térmicos 33

for (unsigned int i=0; i<n_u_dofs; i++)
{

const Real R i = 0.12;

const Real R e = 0.30;

if (mesh.boundary info—>has boundary_ id (
elem, side, 1) || mesh.boundary info—>
has_boundary_id (elem, side, 3)){
Fu(i) 4= —JxW_face[qp]|* PressurexR (x,y)
«phi_face[i][qp];

// Apply pressure on upper side (Newmann)
if (mesh.boundary info—>has_ boundary_ id (elem,

side , 2))

//loop over quadrature face ponts
for (unsigned int qp=0; gp<qface.n_points();
qp++)

//Getting current quadrature point
coordinates:

const Real x = q_point_face[qp](0);

const Real y = q_point_face[qp]|(1);

//loop over the radial dofs since the
pressure acts just upon this
direction

for (unsigned int i=0; i<n_u_dofs; i++)

{

34 APENDICE A. Cédigos

Fv(i) += JxW_face|[qp|*N__section (x)=*
phi_face[i][qp];

dof map.constrain_element matrix_and_vector (Ke, Fe,

dof indices);

system . matrix—>add_matrix (Ke, dof indices);

system.rhs—add vector (Fe, dof indices);

void compute stresses(EquationSystems& es)

{

const MeshBase& mesh = es.get_mesh();
const unsigned int dim = mesh.mesh_dimension () ;

LinearImplicitSystem& system = es.get_system<
LinearImplicitSystem >(" Elasticity ");

unsigned int displacement vars|[2];
displacement__vars[0] = system.variable _number ("u');
displacement_vars[1] = system.variable number ('v");

const unsigned int u_var = system.variable _number ('u");

A.2. Cddigo do problema estrutural sem efeitos térmicos 35

const DofMap& dof map = system.get_dof map() ;

FEType fe type = dof map.variable type(u_ var);
AutoPtr<FEBase> fe (FEBase::build (dim, fe_ type));
QGauss qrule (dim, fe type.default quadrature_ order());
fe—attach quadrature rule (&qrule):;

const std::vector<Real>& JxW = fe—>get JxW () ;

const std::vector<std::vector<Real> >& phi = fe—>get_phi();

const std::vector<std::vector<RealGradient> >& dphi = fe—>
get dphi();

const std::vector<Point>& q point = fe—>get xyz();

ExplicitSystem& stress_system = es.get_system<ExplicitSystem >(
"StressSystem ") ;
const DofMap& stress dof map = stress system.get dof map();

unsigned int sigma_ vars[4];

"sigma_rr'");

sigma_ zz");

sigma_ vars | = stress_system .variable number

n

sigma_ vars |

n

0] (

1] = stress_system.variable number (
sigma_ vars[2]| = stress_system.variable number ('sigma rz");

3]

sigma_ vars | = stress_system .variable_number ('sigma theta');

n

unsigned int vonMises var = stress_system.variable number (

vonMises") ;

std ::vector< std::vector<dof id_ type> > dof indices_var(system
.n_vars());

std :: vector<dof id_type> stress dof indices var;

DenseVector<Number> elem_sigma;

MeshBase:: const element iterator el = mesh.
active_local elements_begin () ;

const MeshBase:: const element iterator end el = mesh.

active local elements_end () ;

std :: fstream fs;

36

APENDICE A. Cédigos

fs.open ("strains.txt', std::fstream::in | std::fstream::out |

std :: fstream ::app) ;

for (; el != end_el; ++el)

{

const Elemx elem = xel;

for (unsigned int var=0; var<2; var++)

{

dof map.dof indices (elem, dof indices var[var],

displacement_vars|[var]);
fe—>reinit (elem);

elem sigma.resize (4);

for (unsigned int qp=0; gp<qrule.n_points(); qp++)

{

const Real x = q point[qp](0);
const Real y = q_point[qp](1)

?

const unsigned int n_x_ dofs = dof indices_var[0].
size () ;

const unsigned int n_y_dofs = dof_ indices_var|[1].
size () ;

Gradient displacement gradient x;
Gradient displacement_ gradient y;
for (unsigned int 1=0; l<n_x_dofs; 1++)
{
displacement_gradient_x.add_scaled (dphi[l][qp

|, system.current_solution(dof_ indices_var

LOTTL]))5

for (unsigned int 1=0; l<n_y_dofs; 1++)

A.2. Cédigo do problema estrutural sem efeitos térmicos 37

displacement__gradient__y.add_scaled (dphi[l][qp

|, system.current_ solution(dof indices_var

[LITL]))5

Real epsilon_ theta = 0;

//std ::cout<<std ::endl;
//std ::cout<<"node values and phi values on

quadrature: "<<std::endl;

for (unsigned int 1=0; l<n_x_dofs; 1++)
{
//std ::cout <<'"("<<system.current_solution (
dof indices_var [0][1])<<","<<phi[l][qp]<<")
<<\t
epsilon_theta += phi[l][qp]*system.

current solution (dof indices var[0][1]) /x;

//Uncomment in case you want strain information

non

[/ fs<<"o = ("<<x<<""<<y<<")'<<std :: endl;

//fs<<'d(ur)/dr = "<<displacement_gradient_x(0)
<<"\t'<<'d(ur)/dz = "<<displacement_gradient x
(1)<<std ::endl;

//fs<<'"d(uz)/dr = "<<displacement_gradient_y (0)
<<"\t'<<'d(uz)/dz = "<<displacement_ gradient__y
(1)<<std ::endl;

//fs<<"epsilon theta = "<<epsilon theta<<std::

endl<<std :: endl;
Real global traction = 0.0;
//Comment or not if you want to account for the

global effect
global traction = N_global(x);

38

APENDICE A. Cédigos

elem_sigma (0) += JxW/[qp] = ((lambda (x)+ 2xmu(x)) x(
0)) + lambda(x)x*(
displacement_gradient 1)+epsilon_theta));

(
displacement_gradient_ x (
v (;
elem_sigma (1) 4= JxXW[qp] = ((lambda(x)+ 2xmu(x))x(
v (
x (

1)) + lambda(x) *(
0)+epsilon_theta) +

displacement_gradient
displacement_gradient _
global traction);
elem_sigma (2) 4+= JXW[qp]* (mu(x)*(
displacement_gradient_x(1)+
displacement__gradient_y (0)));
elem_sigma(3) 4= JxW/[qp] = ((lambda(x)+ 2xmu(x)) x(
epsilon__theta) + lambda((
(
(

) *
displacement__gradient__y (1)+
)));

displacement_ gradient_ x

elem_sigma.scale (1./elem—>volume());

for (unsigned int i=0; i<4; i++)

{

stress_dof map.dof indices (elem,

stress_dof_indices var, sigma_vars[i]);

dof id_type dof index = stress_dof indices_var[0];

if ((stress_system.solution—>first_ local index () <=
dof index) &

A.2. Cddigo do problema estrutural sem efeitos térmicos 39

(dof index < stress_system.solution—
last_local index()))

stress_system.solution—>set (dof_index,

elem sigma(i));

Number vonMises_value = std::sqrt(0.5%(pow(elem_sigma (0)
— elem_sigma (1) ,2.) +

pow (elem_ sigma (1)
— elem_sigma
(4) ,2.) +

pow (elem_sigma (4)
— elem_sigma
(0),2.) +

6. (pow (
elem_sigma (2)
2.))

Ik

stress__dof map.dof indices (elem, stress_dof indices_var,
vonMises_var);

dof id_ type dof index = stress_dof indices var[0];

if ((stress_system.solution—>first local index ()
dof_index) &&

(dof index < stress_system.solution—>last_ local index

0))

<=

stress_system.solution—>set (dof index, vonMises value)

I

40 APENDICE A. Cédigos

fs.close();

// Should call close and update when we set vector entries
directly

stress_system.solution—close ();

stress_system .update () ;

Real N_section (const Real x){
//steel inner and outer traction constant
const Real N_inner_ pipe = 0.¢€6;

const Real N_ outer_ pipe = 0.€6;

//insulation conductivity constant

const Real N insulation = 0.0;

if (x> R _i() & x<=R_i()+t_i())

return xxN__inner_pipe;

else if (x >R _i() +t_ i() & x < R e()—t_e())

return x*N_insulation;

else if (x>=R e() — t_e() & x <= R _¢e())

return xxN_ outer pipe;

else{
std ::string s1('Function k cond called for x out of
domain, bonds!");

error (sl);

Real N _global (const Real x){

A.8. Cddigo do problema estrutural com efeitos térmicos

41

const Real N_inner_ pipe = 20.¢6;
const Real N_outer pipe = 20.e6;

const Real N_insulation = 0.0;

if (x> R i() & x<=R i()+t_i())

return N_inner_ pipe;

else if (x> R_i() + t i() & x < R e()—-t_e())

return N _insulation;

else if (x >=R_e() — t_e() & x <= R_e())

return N_outer pipe;

else{
std::string sl1("Function k cond called for x out, of,
domain, bonds! ");

error (sl);

A.3 Cédigo do problema estrutural com efeitos térmicos

A.4 Cédigo do problema da analise global

A.4.1 Header - Protétipo das classes e das funcdes

42

APENDICE A. Cédigos

//

#ifndef _ Cable Equation h
#define _ Cable Equation_h

//STD library

#include
#include
#include
#include
#include
#include
#include

<iostream>
<algorithm >
<sstream>
<math . h>
<string>
<set>

<vector>

//Boost library
#include <boost /scoped__ptr.hpp>

//Libmesh library

#include "libmesh/libmesh.h'

#include "libmesh/mesh.h'

#include "libmesh/mesh generation.h'
#include "libmesh/exoduslIl io.h'
#include "libmesh/gnuplot io.h'
#include "libmesh/equation systems.h'
#include "libmesh/fe.h'

#include "libmesh/quadrature gauss.h'
#include "libmesh /dof map.h"

#include "libmesh/sparse_ matrix.h'
#include "libmesh/numeric_vector.h'
#include "libmesh/dense matrix.h'
#include "libmesh/dense_ vector.h'
#include "libmesh/linear implicit_system .h"
#include "libmesh/perf log.h'
#include "libmesh/boundary info.h'
#include "libmesh/utility .h"

// To impose Dirichlet boundary conditions
#include "libmesh/dirichlet boundaries.h'

#include "libmesh/analytic function.h'

A.4. Cédigo do problema da andlise global 43

#include '"libmesh/zero function.h'
#include 'libmesh/string to_enum.h'
#include '"libmesh/getpot.h"
#include '"libmesh/dense submatrix.h’

#include '"libmesh/dense subvector.h'

#include '"libmesh/elem.h'

/*General auxiliary functions used

in both methodsx/

inline libMesh :: Real denominator(const libMesh:: Real x, const

libMesh :: Real y,const libMesh::Real exp){ return pow ((pow(x
2.)4pow(y,2.)) exp); };

inline libMesh:: Real sgn(const libMesh::Real x){ return (x > 0)
7 1. (x=070.: =10); };

// Local horizontal force (depends on the local cable
positioning and on its derivative)

libMesh :: Real fx(const libMesh::Real x, const libMesh:: Real y,
const libMesh::Real xl, const libMesh:: Real yl);

// Local vertical force (depends on the local cable positioning
and on its derivative)

libMesh :: Real fy(const libMesh:: Real x, const libMesh:: Real y,
const libMesh::Real x1, const libMesh:: Real yl);

// wrapper of exact solution used to impose Dirichlet conditions
void exact_solution wrapper(libMesh :: DenseVector<libMesh :: Number
> & output, const libMesh::Point & p, const libMesh :: Real);

/*Auxiliary functions for the weak

formulation of Classic methodx/

44 APENDICE A. Cédigos

libMesh :: Real LAl1(const libMesh::Real xl, const libMesh:: Real yl
) ;

libMesh :: Real LA2(const libMesh::Real xl, const libMesh:: Real yl

)

libMesh :: Real LB1(const libMesh:: Real x, const libMesh:: Real y,
const libMesh ::Real x1, const libMesh:: Real yl);

libMesh :: Real LB2(const libMesh:: Real x, const libMesh:: Real y,
const libMesh:: Real xl, const libMesh:: Real yl);

libMesh :: Real All(const libMesh::Real xl,const libMesh:: Real yl)
libMesh :: Real Al12(const libMesh:: Real xl,const libMesh:: Real yl)
libMesh :: Real A21(const libMesh:: Real xl,const libMesh:: Real yl)
libMesh :: Real A22(const libMesh:: Real xl,const libMesh:: Real yl)

libMesh :: Real Bll(const libMesh::Real x,const libMesh:: Real vy,
const libMesh:: Real xl, const libMesh::Real yl);

libMesh :: Real B12(const libMesh:: Real x,const libMesh:: Real vy,
const libMesh::Real xl, const libMesh:: Real yl);

libMesh :: Real B21(const libMesh :: Real x,const libMesh:: Real vy,
const libMesh ::Real x1, const libMesh:: Real yl);

libMesh :: Real B22(const libMesh:: Real x,const libMesh:: Real 1y,
const libMesh::Real x1, const libMesh:: Real yl);

libMesh :: Real Cl1(const libMesh:: Real x,const libMesh::Real 1y,
const libMesh::Real x1, const libMesh:: Real yl);

A.4. Cddigo do problema da andlise global

45

libMesh :: Real Cl12(const libMesh:: Real x,const libMesh:: Real vy,
const libMesh:: Real x1, const libMesh::Real yl);

libMesh :: Real C21(const libMesh:: Real x,const libMesh:: Real vy,
const libMesh::Real x1, const libMesh:: Real yl);

libMesh :: Real C22(const libMesh:: Real x,const libMesh::Real 1y,
const libMesh::Real x1, const libMesh:: Real yl);

void assemble cable linear CLASSIC (libMesh :: EquationSystems & es

, const std::string & system_name) ;

libMesh :: Real LA1(const libMesh ::
, const libMesh:: Real t);

libMesh :: Real LA2(const libMesh ::
, const libMesh::Real t);

libMesh :: Real LB1(const libMesh ::
const libMesh :: Real xl, const
:: Real t);

libMesh :: Real LB2(const libMesh ::
const libMesh :: Real xl, const
::Real t);

libMesh :: Real LB3(const libMesh ::
const libMesh :: Real xl, const
:: Real t);

libMesh :: Real All(const libMesh ::
const libMesh:: Real t);

Real xI

Real xI1

Real x,
libMesh

Real x,
libMesh

Real x,
libMesh

Real xI

, const libMesh:: Real yl

, const libMesh:: Real yl

const

:: Real

const

:: Real

const

:: Real

,const

libMesh :: Real y,
yl, const libMesh

libMesh :: Real y,
yl, const libMesh

libMesh :: Real y,
yl, const libMesh

libMesh :: Real yl,

46

APENDICE A. Cédigos

libMesh ::
t);

libMesh :: Real Al2(const
const libMesh :: Real

libMesh :: Real Al3(const
const libMesh :: Real

libMesh ::

libMesh :: Real A21(const

const libMesh :: Real

libMesh :: Real A22(const
const libMesh :: Real

libMesh ::
t);

libMesh :: Real A23(const
const libMesh :: Real

libMesh ::
t);

libMesh :: Real Bll(const libMesh ::
const libMesh :: Real xI,
:: Real t);

const

libMesh :: Real B12(const libMesh ::
const libMesh :: Real xI,
:: Real t);

const

libMesh :: Real B13(const libMesh ::
const libMesh :: Real xI,
:: Real t);

const

libMesh :: Real B21(const libMesh ::
const libMesh :: Real xI,
:: Real t);

const

libMesh :: Real B22(const libMesh ::
const libMesh :: Real xI,
:: Real t);

const

libMesh :: Real B23(const libMesh ::
const libMesh :: Real xI,
:: Real t);

const

Real xl,const libMesh :: Real
Real xl,const libMesh:: Real
:: Real xI,const libMesh :: Real
Real xl,const libMesh :: Real
Real xl,const libMesh :: Real

Real x,const libMesh :: Real
libMesh :: Real yl,

Real x,const libMesh :: Real
libMesh :: Real yl,

Real x,const libMesh :: Real
libMesh :: Real yl,

Real x,const libMesh :: Real
libMesh :: Real yl,

Real x,const libMesh :: Real
libMesh :: Real yl,

Real x,const libMesh :: Real
libMesh :: Real yl,

yl,

yl,

yl,

yl,

Y

const libMesh

Y

const libMesh

Y

const libMesh

¥

const libMesh

Y

const libMesh

¥

const libMesh

A.4. Cddigo do problema da andlise global

47

libMesh :: Real Cl1(const libMesh :

const libMesh :: Real xI,
:: Real t);

const

libMesh :: Real C12(const libMesh ::

const libMesh :: Real xI,
:: Real t);

const

libMesh :: Real C13(const libMesh ::

const libMesh :: Real xI,
:: Real t);

const

libMesh :: Real C21(const libMesh ::

const libMesh :: Real xI,
::Real t);

const

libMesh :: Real C22(const libMesh ::

const libMesh :: Real xI,
::Real t);

const

libMesh :: Real C23(const libMesh ::

const libMesh :: Real xI,
::Real t);

const

:Real x,const libMesh :: Real

Y

libMesh :: Real yl, const libMesh

Real x,const libMesh::Real vy,
libMesh :: Real yl, const libMesh

Real x,const libMesh:: Real 1y,
libMesh :: Real yl, const libMesh

Real x,const libMesh:: Real vy,
libMesh :: Real yl, const libMesh

Real x,const libMesh :: Real 1y,
libMesh :: Real yl, const libMesh

Real x,const libMesh:: Real vy,
libMesh :: Real yl, const libMesh

void assemble_cable_linear MIXED (libMesh :: EquationSystems & es,

const std::string & system_ name) ;

class Cable Problem Data {

libMesh :: Real cable length;

libMesh :: Real cable diameter;
libMesh :: Real cable axial stiffness;
libMesh :: Real cable submerged weight ;

48 APENDICE A. Cédigos

libMesh :: Real ocean_depth;

libMesh :: Real current_ modulus;

libMesh :: Real (xcurrent_profile)(const libMesh::Real y);

void (xinitial solution) (libMesh :: DenseVector<libMesh :: Number>
& xy, const libMesh:: Point & s, const libMesh:: Real);

public:

Cable Problem_ Data(const libMesh:: Real length, const libMesh ::
Real diameter

const libMesh :: Real axial stiffness , const
libMesh :: Real s weight ,

const libMesh:: Real o depth, const libMesh
:: Real ¢ modulus,

libMesh :: Real (xfunctionl)(const libMesh::
Real) ,

void (*function2) (libMesh :: DenseVector<
libMesh :: Number> &, const libMesh :: Point
&, const libMesh:: Real));

Cable_Problem_ Data(std ::istream & INPUT, libMesh :: Real (%
functionl) (const libMesh:: Real),
void (xfunction2)(libMesh :: DenseVector<
libMesh :: Number> &, const libMesh :: Point
&, const libMesh:: Real));

inline libMesh::Real L() const { return cable length; };

inline libMesh:: Real EA() const { return cable axial_ stiffness
b

inline libMesh:: Real q() const { return cable submerged weight

.

A.4. Cddigo do problema da andlise global 49

inline libMesh::Real Cd() const { return ((0.5)%0.47%
cable diameter*1000.%(pow(current modulus,2.))); };
inline libMesh::Real O Depth() const { return ocean depth; };

inline libMesh::Real f(const libMesh::Real y) const { return (
(¢ current__profile)(y)); };

inline libMesh::Real fl(const libMesh::Real y) const { return
(((#current_profile)(y+0.0001) — (xcurrent_profile)(y
—0.0001))/(0.0002)); };

void initial solution_ wrapper (libMesh :: DenseVector<libMesh ::
Number> & xy, const libMesh :: Point & s,

const libMesh::Real t = 0) const

{ return (xinitial_ solution)
(xy,s,t); }i

void print () const;
friend class Cable_ Equation;
friend class Cable Equation CLASSIC;

friend class Cable Equation MIXED;

class Cable_Equation {
protected:

static Cable_ Problem Data data;

GetPot command line;

public:

50

APENDICE A. Cédigos

//This constructor initializes internal data (physical for
data structure and numerical for GetPot object)
Cable_Equation (const Cable Problem Data & Data, const GetPot &

Command_ Line) ;

//This function solve the problem with the data provided and
gives output in gnuplot format

virtual void solve_cable_problem_complete() = 0;

//Prints physical data
void print_data() const { data.print(); };

/*Auxiliary funtions worth for both

Classic and Mixed methodsx/

// Local horizontal force (depends on the local cable
positioning and on its derivative)

friend libMesh:: Real fx(const libMesh::Real x, const libMesh::
Real y, const libMesh::Real x1, const libMesh:: Real yl);

// Local vertical force (depends on the local cable
positioning and on its derivative)

friend libMesh :: Real fy(const libMesh::Real x, const libMesh ::
Real y, const libMesh:: Real x1, const libMesh::Real yl);

// wrapper of exact solution used to impose Dirichlet
conditions

friend void exact_solution_wrapper(libMesh :: DenseVector<
libMesh :: Number> & output, const libMesh:: Point & p, const
libMesh :: Real) ;

A.4. Cddigo do problema da andlise global

o1

class Cable Equation CLASSIC : public Cable Equation {

libMesh :: Mesh mesh;

libMesh :: EquationSystems equation_systems;

friend libMesh :: Real LAI(const libMesh::Real xl, const libMesh

:: Real yl);

friend libMesh :: Real LA2(const libMesh::Real xl, const libMesh

:: Real yl);

friend libMesh:: Real LB1(const libMesh::Real x, const libMesh
::Real y,const libMesh::Real xl, const libMesh::Real yl);

friend libMesh:: Real LB2(const libMesh::Real x, const libMesh
::Real y,const libMesh::Real xl, const libMesh::Real yl);

friend libMesh:: Real All(const
::Real yl);

friend libMesh :: Real Al2(const
:: Real yl);

friend libMesh :: Real A21(const
:: Real yl);

friend libMesh :: Real A22(const
:: Real yl);

libMesh :

libMesh ::

libMesh ::

libMesh ::

: Real

Real

Real

Real

xl , const

xl , const

xl , const

xl, const

libMesh

libMesh

libMesh

libMesh

52 APENDICE A. Cédigos

friend libMesh:: Real Bll(const libMesh:: Real x,const libMesh ::
Real 'y, const libMesh::Real x1, const libMesh::Real yl);

friend libMesh :: Real B12(const libMesh:: Real x,const libMesh ::
Real 'y, const libMesh:: Real x1, const libMesh::Real yl);

friend libMesh :: Real B21(const libMesh:: Real x,const libMesh::
Real 'y, const libMesh:: Real x1, const libMesh::Real yl);

friend libMesh:: Real B22(const libMesh:: Real x,const libMesh ::
Real 'y, const libMesh:: Real x1, const libMesh::Real yl);

friend libMesh:: Real Cl1(const libMesh::Real x,const libMesh::
Real 'y, const libMesh::Real x1, const libMesh::Real yl);

friend libMesh:: Real C12(const libMesh::Real x,const libMesh ::
Real y, const libMesh:: Real x1, const libMesh::Real yl);

friend libMesh:: Real C21(const libMesh::Real x,const libMesh ::
Real 'y, const libMesh::Real xl, const libMesh::Real yl);

friend libMesh :: Real C22(const libMesh:: Real x,const libMesh ::
Real 'y, const libMesh::Real xl, const libMesh::Real yl);

friend void assemble_ cable linear CLASSIC (libMesh ::

EquationSystems & es, const std::string & system_name) ;

void compute traction();

public:

Cable_ Equation_ CLASSIC(const Cable_Problem_ Data & Data, const
GetPot & Command_Line, const libMesh :: LibMeshInit & INIT);

A.4. Cddigo do problema da andlise global 53

//Function that handles data and put together all problem
parts, solve by Newton’s method the problem and prints (
GNUPLOT format) the OUIPUT

void solve_cable_ problem_ complete () ;

¥

class Cable_Equation_ MIXED: public Cable_Equation {
libMesh :: Mesh mesh;
libMesh :: EquationSystems equation systems;

/*Weak formulation coefficients —
Auxiliary functions to the

assembling functionx*/

friend libMesh :: Real LA1(const libMesh::Real xl, const libMesh
::Real yl, const libMesh::Real t);

friend libMesh :: Real LA2(const libMesh::Real xl, const libMesh
::Real yl, const libMesh::Real t);

friend libMesh:: Real LB1(const libMesh::Real x, const libMesh
:: Real y,const libMesh::Real xl, const libMesh::Real yl,
const libMesh:: Real t);

friend libMesh:: Real LB2(const libMesh::Real x, const libMesh
:: Real y,const libMesh:: Real xl, const libMesh:: Real yl,
const libMesh :: Real t);

friend libMesh:: Real LB3(const libMesh::Real x, const libMesh
:: Real y,const libMesh:: Real xl, const libMesh:: Real yl,
const libMesh :: Real t);

friend libMesh:: Real All(const libMesh::Real xl,const libMesh
::Real yl, const libMesh::Real t);

o4

APENDICE A. Cédigos

friend libMesh:: Real Al2(const libMesh::Real xl,const libMesh
::Real yl, const libMesh::Real t);

friend libMesh :: Real Al3(const libMesh::Real xl,const libMesh
::Real yl, const libMesh::Real t);

friend libMesh:: Real A21(const libMesh::Real xl,const libMesh
::Real yl, const libMesh::Real t);

friend libMesh:: Real A22(const libMesh:: Real xl,const libMesh
::Real yl, const libMesh::Real t);

friend libMesh:: Real A23(const libMesh::Real xl,const libMesh
::Real yl, const libMesh::Real t);

friend libMesh:: Real Bll(const libMesh::Real x,const libMesh ::
Real vy, const libMesh:: Real xl, const libMesh:: Real yl,
const libMesh:: Real t);

friend libMesh:: Real B12(const libMesh:: Real x,const libMesh::
Real vy, const libMesh:: Real xl, const libMesh:: Real yl,
const libMesh:: Real t);

friend libMesh :: Real B13(const libMesh:: Real x,const libMesh ::
Real vy, const libMesh:: Real xl, const libMesh:: Real yl,
const libMesh :: Real t);

friend libMesh :: Real B21(const libMesh::Real x,const libMesh ::
Real y, const libMesh:: Real xl, const libMesh:: Real yl,
const libMesh:: Real t);

friend libMesh :: Real B22(const libMesh:: Real x,const libMesh ::
Real vy, const libMesh:: Real xl, const libMesh:: Real yl,
const libMesh:: Real t);

friend libMesh:: Real B23(const libMesh:: Real x,const libMesh ::
Real vy, const libMesh:: Real xl, const libMesh:: Real yl,
const libMesh:: Real t);

A.4. Cddigo do problema da andlise global

friend libMesh:: Real Cl1(const libMesh::Real x,const libMesh ::
Real vy, const libMesh:: Real xl, const libMesh:: Real yl,
const libMesh:: Real t);

friend libMesh:: Real C12(const libMesh:: Real x,const libMesh ::
Real 'y, const libMesh::Real xl, const libMesh:: Real yl,
const libMesh :: Real t);

friend libMesh:: Real C13(const libMesh::Real x,const libMesh ::
Real 7y, const libMesh:: Real x1, const libMesh:: Real yl,
const libMesh :: Real t);

friend libMesh:: Real C21(const libMesh:: Real x,const libMesh ::
Real vy, const libMesh:: Real xl, const libMesh:: Real yl,
const libMesh:: Real t);

friend libMesh :: Real C22(const libMesh::Real x,const libMesh ::
Real 'y, const libMesh::Real xl, const libMesh::Real yl,
const libMesh:: Real t);

friend libMesh:: Real C23(const libMesh::Real x,const libMesh ::
Real 'y, const libMesh:: Real xl, const libMesh:: Real yl,
const libMesh:: Real t);

//This is the most important function: it assemble the actual
Newton linear system iteration
friend void assemble_ cable linear MIXED (libMesh ::

EquationSystems & es, const std::string & system_name) ;

public:

//Constructor
Cable_Equation_ MIXED (const Cable_ Problem Data & Data, const
GetPot & Command_Line, const libMesh :: LibMeshInit & INIT);

//Function that handles data and put together all problem
parts, solve by Newton’s method the problem and prints (
GNUPLOT format) the OUTPUT

56 APENDICE A. Cédigos

void solve_cable_ problem_complete () ;

}s

#endif

A.4.2 Implementacdo das funcoes membro e auxiliares - source code

//

// Cable_Equation.C

//

//

// Created by rodrigo broggi on 18/10/14.
//

//

#include 'Cable Equation.h'

/*Some friend
functions

implementationssx/

/*x Auxiliary funtions worth
for both Classic and

Mixed methodsx/

// Local horizontal force (depends on the local cable
positioning and on its derivative)

libMesh :: Real fx(const libMesh::Real x, const libMesh:: Real y,
const libMesh:: Real x1, const libMesh::Real yl) {

return (Cable_ Equation ::data.Cd()xsgn(Cable Equation::data.f(y
)*xyl)*(pow(Cable Equation::data.f(y) ,2.))*pow(yl,3)/
denominator (xl,yl,3./2.));

A.4. Cddigo do problema da andlise global 57

libMesh :: Real fy(const libMesh:: Real x, const libMesh:: Real y,
const libMesh:: Real x1, const libMesh::Real yl) {

return (Cable_Equation::data.q() — Cable_Equation::data.Cd()x
sgn (Cable_Equation::data.f(y)*yl)x*(pow(Cable Equation::data
f(y),2.))*xlxpow(yl,2)/denominator (x1,yl,3./2.));

void exact_solution_ wrapper(libMesh :: DenseVector<libMesh :: Number
> & output, const libMesh::Point & p, const libMesh:: Real) {

output (1) = Cable Equation::data.O_ Depth() ;

b

Cable_ Problem_Data:: Cable Problem_ Data(const libMesh :: Real
length , const libMesh:: Real diameter,
const libMesh :: Real
axial stiffness , const
libMesh :: Real
s_ weight |
const libMesh :: Real
o_depth, const libMesh
:: Real ¢_modulus,
libMesh :: Real (xfunctionl
) (const libMesh :: Real)

58 APENDICE A. Cédigos

Y

void (*function2) (libMesh
:: DenseVector<libMesh
:: Number> &, const
libMesh :: Point &,
const libMesh :: Real))

cable_length (length) ,
cable__diameter (
diameter) ,
cable axial stiffness(
axial _stiffness),

cable submerged weight (
s_weight), ocean_depth
(o_depth)
current_ modulus (
c¢_ modulus) ,

current_profile(functionl
), initial solution (
function2) {};

Cable_Problem_ Data:: Cable_Problem_Data(std ::istream & INPUT,
libMesh :: Real (#functionl)(const libMesh:: Real),
void (#function2)(libMesh
:: DenseVector<libMesh
:: Number> &, const
libMesh :: Point &,
const libMesh:: Real))

{

INPUT >> cable_ length;

INPUT >> cable_diameter;

INPUT >> cable axial stiffness;
INPUT >> cable_submerged_ weight;
INPUT >> ocean_depth;

INPUT >> current modulus;

current profile = functionl;

initial solution = function2;

A.4. Cddigo do problema da andlise global 59

void Cable_Problem_Data:: print () const {

Std 11 COUL " sk sk sk o ok ok ok — PROBLEM, |
INFORMATTON— s sk sk sk sk sk sk sk sk sk sk 5 sk sk sk sk sk skokoskskokoskskokoskskokokkok '<<std 1 end]l <<
std :: endl;

std :: cout<<'"Cable /length: '<<cable length<<std::endl;

std :: cout<<"Cable diameter: "<<cable diameter<<std ::endl;

std :: cout<<'Cable jaxial stiffness: "<<cable axial stiffness<<
std :: endl;

std :: cout<<'Cable submerged, weight: '<<cable_ submerged weight
<<std ::endl;

std :: cout<<'Ocean depth: '"<<ocean depth<<std::endl;

std :: cout<<" Current. modulus: "<<current modulus<<std ::endl;

std :: ofstream initial solution_data ('

gnuplot__script_initial _xy_data");
int n = 500;
const libMesh :: Real step = cable length/n;
libMesh :: DenseVector<libMesh :: Number> local (2);
for (int i = 0; i < n; i++) {
initial solution wrapper (local ,stepxi);
initial _solution_ data <<local (0)<<"\t'<<local (1)<<std ::
endl ;

initial solution data.close();

Std :: COU <" ook sk sk sk sk sk sk ok ok sk sk sk sk sk ok ok sk sk sk sk ok ok ok ok sk ok sk ok ok ok — PROBLEM, |
INFORMATION, FEND — sk sk sk s s sk sk sk sk sk oskokoskoskoskoskoskoskoskoskskosk sk skoskskokokokokok "<<std : : endl

60

APENDICE A. Cédigos

<<std ::endl;

Cable_Problem_ Data Cable_Equation::data (0.,0.,0.,0.,0.,0. ,NULL,
NULL) ;

Cable__Equation :: Cable_Equation(const Cable Problem_ Data & Data,

const GetPot & Command Line): command line (Command Line) {

data .
data .
data .
data .
data
data

data
data

cable_ length = Data.cable_ length;

cable diameter = Data.cable diameter;
cable axial stiffness = Data.cable axial stiffness;
cable_submerged weight = Data.cable_ submerged weight;

.ocean__depth = Data.ocean_ depth;

.current modulus = Data.current modulus;
.current profile = Data.current_ profile;
.initial solution = Data.initial solution;

A.4. Cddigo do problema da andlise global 61

functions:

Cable_Equation_ CLASSIC :: Cable_Equation_CLASSIC(const
Cable_Problem_Data & Data, const GetPot & Command Line,

const libMesh ::
LibMeshInit &
INIT)
Cable Equation
(Data,
Command_ Line) ,

mesh (INIT .

comm()) |

equation_systems (
mesh) { };

void Cable Equation CLASSIC::solve cable problem_ complete() {

// Create a mesh with user—defined dimension.
// Read libMesh ::Number of elements from command line
int ps = 200;
if (command line.search (1, "-mn"))
ps = command_line.next(ps);
// Read FE order from command line
std ::string order = "SECOND";

if (command_line.search (2, "—Order", "—0"))

order = command_line.next (order);

// Read number non linear loops
int nl_steps = 200;
if (command_line.search (1, "—nll"))

nl_steps = command_line.next(nl steps);

// Read number linear steps

int 1_steps = 500;

62

APENDICE A. Cédigos

if (command_line.search (1, "=-nl"))

1 _steps = command_line.next(l_steps);

libMesh :: Real tol nl = 1800;

//libMesh :: Real tol exp = —3.;
if (command_line.search(1l, "—tol"))
tol _nl = command_line.next(tol nl);

// Generate 1D mesh in the interval [0,L] with number of
elements ps and order "order'.

libMesh :: MeshTools :: Generation :: build_line (mesh,

ps,
0., data.L(),
(order = "FIRST") ?
libMesh : :EDGE2 : libMesh
:: EDGE3) ;
// Printing mesh info to the screen

Std :: COUL T sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk skokok sk sk ok skoskok ok sk — MESH, INFORMATION
— ko okok ok ok Kok ok Kok koK ok ok ok okok ok ok ok koo ook ook '<<std 1 endl<<std :: endl
)

mesh. print__info () ;

Std 1 COUL " stk sk sk ok s ok ok ok ok ok ok ok ok ok stk stk sk ok ok ok ok ok ok ok — MIESH INFORMATION |

FENID— s st s sk st sk s s skt sk ok sk okosk ok okok ok okokx '<<std @ endl<<std :: endl ;

//Refresh mesh into equation_ system

equation_systems.reinit () ;

// Declare the system and its variables (and relative orders)
libMesh :: LinearImplicitSystem & system = equation_systems.

add_system<libMesh :: LinearImplicitSystem > (" Catenary");

unsigned int x_var = system.add_ variable ('x', libMesh::
Utility ::string to_enum<libMesh :: Order> (order));

unsigned int y_var = system.add_variable ('y"', libMesh ::
Utility ::string to_enum<libMesh :: Order> (order));

// Give the system a pointer to the assembly function

A.4. Cédigo do problema da andlise global 63

system.attach assemble_function (assemble_ cable linear CLASSIC)

?

// Construct two Dirichlet boundary conditions, one omogeneus

and the other nonomogeneus object

// Indicate which boundary IDs we impose the BC on

std :: set<libMesh :: boundary_id_type> boundary_ids_ omogeneus;

// the dim==1 mesh has two boundaries with IDs 0 and 1

boundary_ids_omogeneus. insert (0) ;

// Create a vector storing the variable numbers which the BC
applies to

std :: vector<unsigned int> variables_omogeneus(2);

variables__omogeneus [0] = x_var;

variables omogeneus[1] = y_var;

// Create a ZeroFunction to initialize dirichlet bc

libMesh :: ZeroFunction<> zf;

// Create a DirichletBoundary object with position, variables
and values
libMesh :: DirichletBoundary dirichlet bc omogeneus (

boundary_ids_omogeneus, variables_omogeneus, &zf);

// We must add the Dirichlet boundary condition _ before
// we call equation_systems.init ()
system .get_dof map().add_dirichlet_boundary (

dirichlet _bec_omogeneus);

// Construct a Dirichlet non—homogeneus boundary condition

object

// Indicate which boundary IDs we impose the BC on

std :: set<libMesh :: boundary_id_type> boundary_ids;

boundary ids.insert (1);

64

APENDICE A. Cédigos

// Create a vector storing the variable numbers which the BC
applies to
std :: vector<unsigned int> variables(1);

variables [0] = y_var;

// Create an AnalyticFunction object that we use to project
the BC

// This function just calls the function exact_ solution via
exact_solution__wrapper

libMesh :: AnalyticFunction<> exact_solution_ object (

exact_ solution__wrapper);

libMesh :: DirichletBoundary dirichlet_bc (boundary_ids,

variables , &exact_solution_object);

// We must add the Dirichlet boundary condition _ before
// we call equation_ systems.init ()

system .get_dof map().add_dirichlet_boundary (dirichlet_bc);

// Also, initialize an ExplicitSystem to store traction
libMesh :: ExplicitSystem& stress_system = equation_systems.
add_system<libMesh :: ExplicitSystem> ("TractionSystem");

stress_system.add_variable("T", libMesh ::CONSTANT, libMesh ::
MONOMIAL) ;

// Initialize data structures for equation system object and
print its information

equation systems.init ();

Std 1 COUL K" sk sk skok s ok skt ok skok ok skok ok ok ok kok ko ok — BQUATION, SYSTEM |
INFORMATTON — s s sk s sk sk sk sk sk sk 5k sk sk ok ok sk ok ok sk ok ook sk ok koo ok okokok ok '<<std @ : endl
<<std ::endl;

equation_systems. print__info () ;

St 11 COUL K" sk sk sk skskokok ok sk ok skox ok % kok sk ko ook ok ok ok kx — BQUATION, SYSTEM,
INFORMATTON, FEEND — s sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok ok okokokokokor ok ' <<std 2 2 endl]
<<std ::endl;

A.4. Cédigo do problema da andlise global

65

//Create a performance—logging

libMesh :: PerfLog perf log("Systems Catenary");

//Get a reference to the Catenary system

libMesh :: LinearImplicitSystem& catenary static system =

equation_systems.get system<libMesh :: LinearImplicitSystem >(

"Catenary");

// Number of steps and tolerance criterion for the nonlinear
iterations
const unsigned int n_nonlinear steps = nl_ steps;

const libMesh :: Real nonlinear tolerance = tol nl;

// It is convenient also to define a max linear solver
iterations for the linear system when the convergence is
not certain

. : . -
equation_systems.parameters.set<unsigned int>("linear solver,

maximum, iterations") = 1_steps;

//Project an initial solution with an AnalyticFunction object:

// This function just calls the function initial solution via
initial solution_ wrapper
libMesh :: AnalyticFunction<> initial_solution__object (x

Cable_Equation::data.initial solution);

//Using an initial exact solution it is proected in the
aproximated functional space

system . project_ solution(&initial solution_ object);

//Plotting the initial "solution'

libMesh :: GnuPlotIO plotl (mesh,"Initial position CLASSIC",
libMesh :: GnuPlotIO : : GRID_ON) ;

plotl.write_equation_systems('gnuplot script initial CLASSIC'

equation_systems) ;

66

APENDICE A. Cédigos

// Get a copy of the nonlinear current iteration solution (to
test whether to exit or not the loop)

libMesh :: AutoPtr<libMesh :: NumericVector<libMesh :: Number> >

last _nonlinear_ soln (catenary static_system.solution—>clone

());

// Setting linear solve tolerance
const libMesh :: Real initial linear solver tol = 1.e—10;
equation_systems.parameters.set<libMesh :: Real> ("linear solver

~tolerance") = initial linear solver_ tol;

// Beginning nonlinear loop

for (unsigned int 1=0; l<n_nonlinear_ steps; ++1) {

// Update last nonlinear solution
last_nonlinear_soln—zero () ;

last _nonlinear soln—>add(xcatenary static_ system.solution):;

// Assemble and solve linear system
perf log.push("linear solve");
equation_systems.get_ system (' Catenary").solve();

perf log.pop('linear solve");

// Compute the difference between current and last nonlinear
iterations
last nonlinear soln—>add (—1., xcatenary static_ system.

solution);
last_nonlinear_soln—>close ();
// Compute the L2 norm and the HIl of the solution difference
const libMesh :: Real norm_delta = system.calculate norm (x
last_nonlinear_soln ,libMesh ::L2);

const libMesh :: Real normhl = system.calculate norm (x

last_nonlinear soln ,libMesh ::H1);

A.4. Cédigo do problema da andlise global 67

// Get the number of iterations required to solve the linear
system and its final residual
const unsigned int n_linear iterations =

catenary static_system.n_linear iterations();

const libMesh:: Real final linear residual =

catenary static_system.final linear residual();

// Print out the convergence info for both linear and
nonlinear iterations

std :: cout << ' Newton: '<<l<<'—th step.

L '<<std i endl;

std :: cout << "Linear solver ,converged at step: ' <<
n linear iterations <<std::endl

<< ", final residual: "<< final linear residual <<std::endl

<< ", Nonlinear ,convergence: ||u — u_old|| L2 =" <<
norm delta <<std :: endl
<< ", Nonlinear, convergence: ||u — u_old|| Hl = " << normhl

<< std::endl;

"

std :: cout <<

l<<std ::endl;

// Terminate solution iteration if the difference between
last and current nonlinear solutions is sufficiently
small and if the most recent linear system was solved to
a sufficient tolerance

if ((norm_delta < nonlinear tolerance) && (
catenary_static_system.final linear_ residual() <

nonlinear_ tolerance)) {

std :: cout << " Nonlinear solver converged at, step '
<< 1

<< std::endl;

break ;

// Decrease the linear system tolerance. To obtain the

quadratic convergence with Newton method the linear

68 APENDICE A. Cédigos

system tolerance needs to decrease as we get closer to
the solution.
//equation_systems.parameters.set<libMesh :: Real> ("linear
solver tolerance") =
//std ::min(Utility :: pow<2>(final linear residual),

initial linear_ solver_ tol);
} // end nonlinear loop

// Post—process the solution to compute the stresses

compute_traction () ;

libMesh :: GnuPlotIO plot (mesh,"Stationary position classic",
libMesh :: GnuPlotIO : : GRID_ON) ;
plot.write_equation_systems("gnuplot script CLASSIC"

equation_systems)

return ;

/*Weak formulation
coefficients
definition for

CLASSIC methodx/

libMesh :: Real LAl(const libMesh::Real xl, const libMesh:: Real yl
) A

return (Cable_Equation::data.EA()*(denominator(xl,yl,0.5) —1.)
*x1/denominator (xl,yl,0.5));

}s

libMesh :: Real LA2(const libMesh:: Real xl, const libMesh:: Real yl
) A

A.4. Cddigo do problema da andlise global 69

return (Cable Equation::data.EA()*(denominator(xl,yl,0.5) —1.)
xyl/denominator (xl,yl,0.5));

b

libMesh :: Real LB1(const libMesh:: Real x, const libMesh:: Real y,
const libMesh:: Real xl, const libMesh::Real yl) {

return (denominator(xl,yl,0.5)«fx(x,y,xl,yl));

}s

libMesh :: Real LB2(const libMesh:: Real x, const libMesh:: Real y,
const libMesh::Real x1, const libMesh::Real yl) {

return (denominator(xl,yl,0.5)*fy(x,y,xl,yl));

}s

libMesh :: Real All(const libMesh::Real xl,const libMesh::Real yl)
{

return (Cable Equation::data.EA() *(denominator(xl,yl,3./2.)—
pow(yl,2))/(denominator(xl,yl,3./2.)));

}s

libMesh :: Real Al12(const libMesh:: Real xl,const libMesh:: Real yl)
{

return (Cable Equation::data .EA()xxl*yl/(denominator (xl,yl

,3./2.)))5
b

libMesh :: Real A21(const libMesh::Real xl,const libMesh::Real yl)
{

70 APENDICE A. Cédigos

return (Cable Equation::data.EA()*xl*yl/(denominator(xl,yl

,3./2.)));
}s

libMesh :: Real A22(const libMesh:: Real xl,const libMesh:: Real yl)
{

return (Cable Equation::data .EA()*(denominator(xl,yl,3./2.)—
pow(xl,2.))/(denominator(xl,yl,3./2.)));

}s

libMesh :: Real Bll(const libMesh::Real x,const libMesh::Real vy,
const libMesh::Real xl, const libMesh::Real yl) {

return (—2.xCable_Equation :: data.Cd()*sgn(Cable_Equation ::
data.f(y)xyl)*(pow(Cable Equation::data.f(y) ,2.))*xl*pow(yl
,3.) /(denominator(xl,yl,2.)));

}s

libMesh :: Real B12(const libMesh:: Real x,const libMesh:: Real 1y,
const libMesh:: Real x1, const libMesh::Real yl) {

return (Cable_Equation:: data.Cd()«sgn(Cable Equation:: data.f
(y)*yl)*(pow(Cable_Equation::data.f(y) ,2.))x
(3.%pow(xl,2.)xpow(yl,2.) + pow(yl,4.))/(denominator
(x1,y1,2.)));

}s

libMesh :: Real B21(const libMesh:: Real x,const libMesh::Real 1y,
const libMesh:: Real x1, const libMesh::Real yl) {

return ((Cable_Equation::data.q()x*xl/denominator(xl,yl,0.5))
+ Cable_Equation ::data.Cd()x*

A.4. Cddigo do problema da andlise global 71

sgn (Cable_Equation :: data.f(y)x*yl)x(pow(
Cable_Equation::data.f(y) ,2.))*(pow(xl,2.) *pow (
yl,2.) — pow(yl,4.))/(denominator(xl,yl,2.)));

b

libMesh :: Real B22(const libMesh:: Real x,const libMesh::Real 1y,
const libMesh:: Real xl, const libMesh::Real yl) {

return ((Cable Equation::data.q()*yl/denominator(xl,yl,0.5))
— 2xCable_Equation :: data.Cd () *
sgn (Cable_Equation ::data.f(y)*yl)*(pow(
Cable Equation::data.f(y) ,2.))*(pow(xl,3.)xyl) /(
denominator (x1,yl,2.)));

}s

libMesh :: Real Cl1(const libMesh::Real x,const libMesh:: Real vy,
const libMesh::Real x1, const libMesh::Real yl) { return 0;

b

libMesh :: Real Cl12(const libMesh:: Real x,const libMesh:: Real vy,
const libMesh::Real x1, const libMesh::Real yl) {

return (2.xCable_Equation::data.Cd()x*sgn(Cable_Equation ::
data.f(y)*yl)*xCable Equation::data.f(y)x
Cable_Equation :: data. fl (y)*(pow(yl,3.))/(
denominator (x1l,yl,1.)));

b

libMesh :: Real C21(const libMesh:: Real x,const libMesh:: Real vy,
const libMesh::Real x1, const libMesh::Real yl) { return 0;

b

libMesh :: Real C22(const libMesh:: Real x,const libMesh::Real 1y,
const libMesh:: Real x1, const libMesh::Real yl) {

72 APENDICE A. Cédigos

return (—2.xCable_Equation :: data.Cd()x*sgn(Cable_Equation ::
data.f(y)xyl)*Cable_Equation::data.f(y)*xCable_Equation ::
data. fl (y)*xl*(pow(yl,2))/(denominator(xl,yl ,1.)));

/* Assemble
function for
Classic

method* /

void assemble_ cable_ linear CLASSIC (libMesh :: EquationSystems& es

const std::string& system name) {

// Confirm if we are assembling the right system

libmesh_assert_equal_ to(system_ name, 'Catenary");

// Getting reference to the mesh object

const libMesh :: MeshBase& mesh = es.get mesh();

// Get dimension of the problem

const unsigned int dim = mesh.mesh dimension () ;

// Get reference to the catenary system and its variables
number ids
libMesh :: LinearImplicitSystem & catenary_ static_system = es.

get_system<libMesh :: LinearImplicitSystem> (" Catenary");

const unsigned int x_var = catenary_static_system.
variable_number ("x");

const unsigned int y_var = catenary_static_system.
variable_number ("y");

// get finite element type for 'x' (same as the "y' type) —

both are displacement types

A.4. Cédigo do problema da andlise global 73

libMesh :: FEType fe_ disp_type = catenary_static_system.

variable_type(x_var);

// Build a Finite Element object (pointer) of the specified
type for the displacement variables

libMesh :: AutoPtr<libMesh :: FEBase> fe disp (libMesh::FEBase::
build (dim, fe disp_type));

// Gauss quadrature rule for numerical integration apropriate
for the displacement finite element type

libMesh :: QGauss qrule (dim, fe disp_type.
default quadrature order());

// Setting the quadrature rule to the finite elemnt objects (
fe_disp is a pointer that will refer to different elements)

fe_disp—>attach_quadrature_rule (&qrule);

// Defining references to cell—specific data that will be used

to assemble the linear system:

// Get the Jacobian * (quadratre weight) for each quadrature
point point
const std::vector<libMesh :: Real>& JxW = fe_ disp—>get_ JxW () ;

// Get the element functions evaluated at the quadrature
points (first indice is the quadrature point and second is
the node to witch the shape function is related)

const std::vector<std::vector<libMesh :: Real> >& phi = fe_disp
—>get_phi();

// Get the element functions gradients evaluated at the
quadrature points (first indice is the quadrature point and
second is the node to witch the shape function is related)
— , each element is a libMesh:: RealGradient type (dphi[qgp
|[1](j) is the gradient of the shape function related to
the ith node evaluated in the gpth quadrature point in the
jth direction)

const std::vector<std::vector<libMesh :: RealGradient> >& dphi =
fe_disp—>get_dphi();

74

APENDICE A. Cédigos

// A reference to the DofMap object for this system (this
object handles the index translation from node and element
numbers to degree of freedom)

const libMesh ::DofMap & dof map = catenary_static_system.
get__dof map () ;

// Data structures to contain the element mathix and right—
hand—side vector (rhs) contribution.

libMesh :: DenseMatrix<libMesh : : Number> Ke;

libMesh :: DenseVector<libMesh :: Number> Fe;

libMesh :: DenseSubMatrix<libMesh : : Number>
Kxx(Ke) , Kxy(Ke),
Kyx(Ke), Kyy(Ke);

libMesh :: DenseSubVector<libMesh :: Number>
Fx(Fe), Fy(Fe);

// This vector will hold the element dof indices (where in the
global system the element dof get mapped)

std :: vector<libMesh :: dof id_ type> dof indices;

std :: vector<libMesh :: dof id type> dof indices x;

std :: vector<libMesh :: dof _id_type> dof_ indices_y;

// Get element iterator (the active is used for mesh—
refinement situations)

libMesh :: MeshBase :: const element iterator el = mesh.
active local elements_ begin () ;

const libMesh :: MeshBase:: const element iterator end el = mesh.

active_local elements_end () ;
for (; el != end_el; ++el) {

// Store the element we are working at in a pointer (elem)

const libMesh :: Elem* elem = xel;

A.4. Cédigo do problema da andlise global

75

// Get the global dof for the current element and the size
of them (how many nodes in each element)

dof map.dof indices (elem, dof indices);

dof map.dof indices (elem, dof indices x, x_var);

dof _map.dof indices (elem, dof indices y, y_var);

const unsigned int n_dofs = dof indices.size ();
const unsigned int n_x_dofs = dof_ indices_x.size ();
const unsigned int n_y_ dofs = dof indices_y.size();

//Compute the cell —specific data mentioned earlier

fe disp—>reinit (elem);

//Prevent cases in witch there exixts diferent elements
types in mesh (triangles and quadrilateral)
Ke.resize (n_dofs, n_dofs);

Fe.resize (n_dofs);

//The DenseSubMatrix.repostition () member takes the (
row_offset , column_offset, row_size, column_size).

//Similarly , the DenseSubVector.reposition () member takes
the (row__offset, row_size)

Kxx.reposition (x_varxn_ x_ dofs, x_ vars«n_ x_ dofs, n_x_ dofs,
n_x_dofs);

Kxy.reposition (x_varxn_x_dofs, y_ varsn_x_dofs, n_x_dofs,

n_y dofs);

Kyx.reposition (y_varxn_x_dofs, x_ varsn_y_ dofs, n_y_ dofs,
n_x_dofs);
Kyy.reposition (y_varxn_x dofs, y_var«n_x_ dofs, n_y dofs,

n_y dofs);

Fx.reposition (x_varsn_x_dofs, n_x_ dofs);

Fy.reposition (y_varsn_y_dofs, n_y dofs);

//Build element matrix and RHS using numerical integration
note that the previus step solution is required hear)

for (unsigned int qp=0; gp<qrule.n_points(); qp++) {

APENDICE A. Cédigos

libMesh :: Number x =0
libMesh :: Number y =0

libMesh :: Gradient grad x;
libMesh :: Gradient grad y;

for (unsigned int 1=0; l<n_x_dofs; 1++) {

x += phi[l][qgp]*catenary_ static_system.current_ solution
(dof indices_x[1]);

y += phi[l][gp]*catenary static_system.current_solution
(dof indices y[1]);

grad_x.add_scaled (dphi[l][qp],catenary static_system.

current_solution (dof indices x[1]));

grad_y.add_scaled (dphi[l][qp],catenary_static_system.

current_solution (dof indices _y[l]));

const libMesh::Real xl = grad_x(0);
const libMesh::Real yl = grad_y(0);

for (unsigned int i=0; i<n_x_dofs; i++) {

Fx(i) 4= xXW/[qp]*(LA1(x1,yl)«dphi[i][qp](0) — LB1(x,y,xl
,y1)#phi[i][qp] — All(xl,yl)*xl+dphi[i][qp](0) — Al2(
xl,yl)*ylxdphi[i][qp](0) +

Bll(x,y,xl,yl)*xl«phi[i][qp] + Bl12(x,y
,x1,yl)xylxphi[i][qp] + Cll(x,y,xl,
yl)sxxphi[i]|[qp] + Cl2(x,y,xl,yl)*y

A.4. Cddigo do problema da andlise global 7

*phi[i][ap]);

Fy(i) 4= JxW/[qp]*(LA2(x1l,yl)«dphi[i][qp](0) — LB2(x,y,xl
,yD)*phi[i][qp] — A21(xl,yl)*xl«dphi[i][qp](0) —
A22(x1,yl)xyl«dphi[i][qp](0) + B2l(x,y
yx1,yl)xxlxphi[i][qp] + B22(x,y,xl,
yl)xyl«phi[i][gp] + C21(x,y,xl, yl)x*
x#phi[i][agp] +

C22(x,y,xl,yl)*y*phi[i][qp]);

for (unsigned int j=0; j<n_x_dofs; j++) {

Kxx(i,j) += JxW[qp]*((—Al1l(x]l,yl)*dphi[j]|[qp](0)«dphi]
i][qp](0)) + (Bll(x,y,xl,yl)*dphi[j][qp](0)=*phi[i]]
ap]) +

(C11(x,y,xl,yl)*phi[j][qp]*phi[i
Jlap]));

Kxy(i,j) += XW[ap]*((—A12(x1,yl)*dphi[]j][qp](0)*dphi]
i]lap](0)) + (B12(x,y,xl,yl)*dphi[j][ap](0)*phi[i]]
ap|) +

(C12(x,y,xl,yl)*phi[j][qp]*phili
[lap]));

Kyx(1,]
K
)

i
ap]

) += W [qp]*((—A21(xl,yl)*dphi[j][qp](0)x*dphi]
pl(0)) + (B21(x,y,xl,yl)*dphi[j][qp](0)*phi[i]]
+
(C21(x,y,x1,yl)*phi[j][ap]*phili
[lar]));

Kyy(i,j) += XWlap]*((—A22(xl,yl)*dphi[j][ap](0)*dphi]
i][ap](0)) + (B22(x,y,xl,yl)*dphi[j][ap](0)xphil[i]]
ap|) +

(C22(x,y,xl,yl)*phi[j][qp]*phili
[[ap]));

78

APENDICE A. Cédigos

}s

} // end of the quadrature point gp—loop

dof _map.heterogenously constrain_element_ matrix_and_vector (
Ke, Fe, dof indices);

catenary_static_system.matrix—>add_matrix (Ke, dof_indices);

catenary_ static_ system.rhs—add vector (Fe, dof indices);
} // end of element loop

return ;

/*Post—processing
function for classic
method to calculate

traction*/

void Cable Equation CLASSIC::compute traction() {

//Getting mesh reference

const libMesh :: MeshBase& mesh = equation systems.get mesh();

//Getting dimension of problem

const unsigned int dim = mesh.mesh_dimension () ;

//Getting reference to the "Elasticity" system that should be
already solved
libMesh :: LinearImplicitSystem& system = equation_systems.

get__system<libMesh :: LinearImplicitSystem >(" Catenary");

//Getting variables numbers

unsigned int displacement_vars[2];

A.4. Cddigo do problema da andlise global 79

displacement vars[0] = system.variable number ('x");
displacement_vars[1l] = system.variable_number ("y");
const unsigned int u_var = system.variable number ("x");

const libMesh ::DofMap& dof map = system.get dof map () ;

libMesh :: FEType fe_type = dof map.variable_ type(u_var);

libMesh :: AutoPtr<libMesh :: FEBase> fe (libMesh ::FEBase:: build (
dim, fe type));

libMesh :: QGauss qrule (dim, fe_ type.default quadrature_ order ()
)

fe—attach quadrature_ rule (&qrule);

const std::vector<libMesh :: Real>& JxW = fe—>get JxW () ;
const std::vector<std::vector<libMesh :: Real> >& phi = fe—>
get_phi();
const std::vector<std::vector<libMesh :: RealGradient> >& dphi =
fe—>get_dphi();

libMesh :: ExplicitSystem& traction_system = equation_systems.
get system<libMesh :: ExplicitSystem >("' TractionSystem ") ;

const libMesh :: DofMap& traction_ dof map = traction_system.
get_dof map () ;

unsigned int T var = traction_ system.variable number("T");

std :: vector< std::vector<libMesh ::dof id_ type> >
dof indices_var(system.n_ vars());

std :: vector<libMesh :: dof id_type> traction_ dof indices_ var;

libMesh :: Real elem_ sigma;

APENDICE A. Cédigos

libMesh :: MeshBase :: const element iterator el = mesh.
active_local_elements_begin ();
const libMesh :: MeshBase:: const element iterator end el = mesh.

active_local elements_end();

//mesh elements loop

for (; el != end el; ++el) {
const libMesh :: Elemx elem = xel;

//getting dof indices map for the displacement variables
for (unsigned int var=0; var<2; var++)
dof _map.dof indices (elem, dof_ indices_var|[var],

displacement_ vars|[var]);

//reinitilize element properties

fe—>reinit (elem);

//set to zero storing element traction vector

elem_sigma = 0;

//loop over the quadrature points (it is performed an
integration of the traction on each element and after
//it , the integral is divided by the element area (volume or

length))
for (unsigned int qp=0; gp<qrule.n_points(); qp++) {

//Getting quadrature point r—coordinate and dof number of
the element on each wvariable
const unsigned int n_x_dofs = dof indices_var[0].size();

const unsigned int n_y_ dofs = dof_ indices_var|[1].size();

// Get the gradients at this quadrature point:

//(it is the sum of all shape function gradients weighted
by the respective dof displacement solution)

libMesh :: Gradient displacement_ gradient_ x;

libMesh :: Gradient displacement gradient y;

A.4. Cédigo do problema da andlise global 81

for (unsigned int 1=0; l<n_x_dofs; 1++)
displacement gradient x.add_ scaled(dphi[l][qp], system.

current_solution (dof indices_var [0][1]));

for (unsigned int 1=0; l<n_y_dofs; 1++)
displacement gradient y.add scaled (dphi[l][qp], system.

current__solution (dof_indices_var [1][1]));

//The integration is done to have more precise stress
constants on each element (adding quadrature point
contribute) :

//to understand those terms see the elastic law and
congruence for axisymmetrical problems in cylindrical
coordinates

elem_sigma += JxW/[qp|*(data.EA()*(sqrt (
displacement_gradient_x(0)xdisplacement_gradient_ x(0) +
displacement_gradient y (0)*displacement gradient_ 1y (0))

-1));

// Get the average stresses by dividing by the element
volume

elem_sigma = elem_sigma/(elem—>volume ()*1000) ;
// load elem_sigma data into traction_ system

//getting dof indices map for the current variable
traction__dof map.dof indices (elem, traction_dof indices_var

, T_var);

// We are using CONSTANT MONOMIAL basis functions, hence we
only need to get

// one dof index per variable

82 APENDICE A. Cédigos

libMesh ::dof id_type dof index = traction_ dof indices_ var
[0];

if ((traction_system.solution—>first local index () <=
dof index) && (dof index < traction system.solution—
last_local index()))

traction_system.solution—>set (dof_ index, elem_sigma);

traction_system.solution—>close () ;

traction system .update () ;

Cable_Equation_ MIXED :: Cable Equation MIXED (const
Cable Problem Data & Data, const GetPot & Command Line,
const libMesh ::
LibMeshInit & INIT
) : Cable_Equation
(Data , Command_ Line
)
mesh (INIT .comm ()) ,
equation_systems (
mesh) { };

A.4. Cédigo do problema da andlise global

void Cable Equation MIXED::solve cable problem complete ()

// Create a mesh with user—defined dimension.
// Read number of elements from command line
int ps = 200;

if (command line.search (1, "-m"))

ps = command_line.next (ps);

// Read FE order from command line
std::string order = "SHCOND";
if (command_line.search (2, "—Order', "—0"))

order = command_line.next (order);

// Read FE order from command line
std::string order t = "CONSTANT";
if (command_line.search (2, "—Ordert", "—ot"))

order_t = command_line.next (order_t);

// Read number non linear loops
int nl_steps = 200;
if (command_line.search (1, "—nll"))

nl_steps = command_line.next(nl_ steps);

// Read number linear steps
int 1_steps = 500;
if (command_line.search (1, "—-nl"))

1 _steps = command_line.next(l_steps);

libMesh :: Real tol nl = Cable Equation::data.L();
if (command_line.search (1, "—tol"))

tol _nl = command line.next(tol nl);

// Generate 1D mesh in the interval [0,L] with number of
elements ps and order "order'

libMesh :: MeshTools :: Generation :: build_line (mesh,
bs,

84

APENDICE A. Cédigos

0., Cable_Equation
crdata.L(),
(order = "FIRST")
7 libMesh ::
EDGE2 : libMesh
:: EDGE3) ;

// Printing mesh info to the screen

St 1 COUL K" sk sokok ook s ok koo ok ok ok ok ook ok ok ok ook % — VIESH INFORMATION
— ko okok ok ok ok ok ok Kok R Kok Rk ok ok ok ok ok ok R okok koo ko ok '<<std 1 endl<<std :: endl
)

mesh. print__info () ;

St 11 COU " skok sk stk sk ok skosk sk sk skok sk skoskok ok skok sk sk oskok stk ok koo — VIESH, INFORMATION, |

FINID — sk st s sk st sk s skt sk stk ook ok ook okokx '<<std @ endl<<std :: endl ;

//Refresh mesh into equation_ system

equation_systems.reinit ();

// Declare the system and its variables (and relative orders)
libMesh :: LinearImplicitSystem & system = equation_ systems.

add__system<libMesh :: LinearImplicitSystem> ("Catenary");

unsigned int x_var = system.add variable ('x", libMesh ::
Utility ::string_to_enum<libMesh :: Order> (order));

unsigned int y_ var = system.add variable ('"y', libMesh::
Utility ::string_ to_enum<libMesh :: Order> (order));

unsigned int t_var;

if (order_t = "FIRST")
t_var = system.add_variable ("t', libMesh:: Utility ::
string_ to_enum<libMesh :: Order> (order_t));

else
t_var = system.add_variable ("t", libMesh ::CONSTANT, libMesh

: : MONOMIAL) ;

// Give the system a pointer to the assembly function

system.attach assemble_ function (assemble cable linear MIXED);

A.4. Cédigo do problema da andlise global 85

// Construct two Dirichlet boundary conditions, one omogeneus

and the other nonomogeneus object

// Indicate which boundary IDs we impose the BC on

std :: set<libMesh :: boundary_id_type> boundary_ ids omogeneus;

// the dim==1 mesh has two boundaries with IDs 0 and 1

boundary ids_omogeneus.insert (0);

// Create a vector storing the variable numbers which the BC
applies to

std :: vector<unsigned int> variables _omogeneus(2);

variables__omogeneus [0] = x_var;

variables__omogeneus[1] = y_var;

// Create a ZeroFunction to initialize dirichlet_bc

libMesh :: ZeroFunction<> zf;

// Create a DirichletBoundary object with position, variables
and values
libMesh :: DirichletBoundary dirichlet bc_ omogeneus (

boundary ids omogeneus, variables omogeneus, &zf);
// We must add the Dirichlet boundary condition _ before
// we call equation_systems.init ()
system .get_dof map().add_dirichlet_boundary (
dirichlet__bc_omogeneus);

// Construct a Dirichlet boundary condition object

// Indicate which boundary IDs we impose the BC on

std :: set<libMesh :: boundary_ id_type> boundary_ids;
boundary_ids.insert (1);

// Create a vector storing the variable numbers which the BC

applies to

86

APENDICE A. Cédigos

std :: vector<unsigned int> variables(1);

variables [0] = y_var;

// Create an AnalyticFunction object that we use to project
the BC

// This function just calls the function exact solution via
exact_solution wrapper

libMesh :: AnalyticFunction<> exact__solution_object (

exact_solution__wrapper);

libMesh :: DirichletBoundary dirichlet_bc (boundary_ ids,

variables , &exact_solution_object);

// We must add the Dirichlet boundary condition _ before
// we call equation_systems.init ()

system.get_dof map().add_dirichlet_boundary (dirichlet_ bc);

// Initialize data structures for equation system object and
print its information

equation_systems.init ();
equation_systems.print_info () ;

//Create a performance—logging

libMesh :: PerfLog perf log('Systems Catenary");

//Get a reference to the Catenary system

libMesh :: LinearImplicitSystem& catenary static system =
equation_systems.get_system<libMesh :: LinearImplicitSystem >(
"Catenary");

// Number of steps and tolerance criterion for the nonlinear
iterations
const unsigned int n_nonlinear_ steps = nl_ steps;

const libMesh :: Real nonlinear tolerance = tol nl;

// 1t is convenient also to define a max linear solver

iterations for the linear system when the convergence is

A.4. Cédigo do problema da andlise global 87

not certain
equation_systems.parameters.set<unsigned int>("linear solver,

maximum, iterations") = 1_steps;
//Project an initial solution with an AnalyticFunction object:

// This function just calls the function initial solution via
initial solution_wrapper
libMesh :: AnalyticFunction<> initial_solution__object (x

Cable Equation::data.initial solution);

// An initial exact solution is projected in the aproximated
functional space

system . project_solution(&initial solution_ object);

//Plotting the initial "solution"

libMesh :: GnuPlotIO plotl (mesh, " Initial position" libMesh ::
GnuPlotIO : :GRID_ON) ;

plotl.write_ equation_systems("'gnuplot script initial MIXED"

equation_systems) ;

// Get a copy of the mnonlinear current iteration solution (to
test whether to exit or not the loop)
libMesh :: AutoPtr<libMesh :: NumericVector<libMesh : : Number> >

last_nonlinear_soln (catenary_static_system.solution—>clone

());

// Setting linear solve tolerance
const libMesh :: Real initial linear_ solver tol = 1.e—10;
equation_systems.parameters.set<libMesh :: Real> ('"linear solver

~tolerance') = initial_ linear_ solver_ tol;

// Beginning nonlinear loop

for (unsigned int 1=0; l<n_nonlinear_ steps; ++1) {

// Update last nonlinear solution
last_nonlinear_ soln—>zero () ;

last_nonlinear_ soln—>add(*catenary_static_system.solution);

88

APENDICE A. Cédigos

// Assemble and solve linear system
perf log.push("linear solve");
equation_systems.get_system (' Catenary").solve();

perf log.pop('linear solve");

// Compute the difference between current and last nonlinear
iterations
last nonlinear soln—>add (—1., xcatenary static_ system.

solution);
last nonlinear soln—>close ();

// Compute the L2 norm and the Hl of the solution difference

const libMesh :: Real norm_delta_x = system.calculate norm (x
last nonlinear soln ,0,libMesh::L2);

const libMesh :: Real norm_delta_y = system.calculate norm (x
last_nonlinear_soln ,1,libMesh::L2);

const libMesh :: Real norm_delta_t = system.calculate_ norm (x
last _nonlinear soln ,2 libMesh::L2);

const libMesh :: Real norm_delta = sqrt (norm_ delta xx

norm_ delta_x + norm_ delta_ys*norm_ delta_y);
const libMesh :: Real norm_delta all = system.calculate norm (x

last_nonlinear_ soln ,libMesh ::L2);

// Get the number of iterations required to solve the linear
system and its final residual
const unsigned int n_linear iterations =

catenary_static_system.n_linear iterations();

const libMesh :: Real final linear residual =

catenary_static_system.final linear_ residual();

// Print out the convergence info for both linear and

nonlinear iterations

A.4. Cédigo do problema da andlise global 89

std :: cout << " Newton: '<<l<<'—th step,
L '<<std i endl;

std :: cout << "Linear solver converged at step: ' <<
n linear iterations <<std::endl
<< ", final residual: "<< final linear residual <<std::endl
<< ", Nonlinear ,convergence: ||u — u_old|| L2 =" <<
norm_ delta all <<std::endl
<< ", Nonlinear convergence: ||xy — xy_old|| L2 =" <<
norm_delta <<std :: endl
<< ",,Nonlinear convergence: ||t . — t_old || L2 =" <<
norm_delta t <<std::endl;

"

std :: cout <<

L '<<std i endl;

// Terminate solution iteration if the difference between
last and current nonlinear solutions is sufficiently
small and if the most recent linear system was solved to
a sufficient tolerance

if ((norm_delta < nonlinear_ tolerance) && (
catenary_static_system.final linear residual () <

nonlinear_tolerance)) {

std :: cout << " Nonlinear ;solver ,converged at step '
<< 1

<< std::endl;

break ;

// Decrease the linear system tolerance. To obtain the
quadratic convergence with Newton method the linear
system tolerance needs to decrease as we get closer to
the solution.

//equation_systems.parameters.set<libMesh :: Real> ("linear
solver tolerance") =

//std ::min(Utility ::pow<2>(final linear_ residual),

initial linear solver_ tol);

90 APENDICE A. Cédigos

libMesh :: GnuPlotIO plot (mesh,"Stationary, position mexed,
formulation" ,libMesh :: GnuPlotIO ::GRID_ON) ;
plot.write equation_ systems("gnuplot script MIXED" |

equation_systems) ;

return ;

libMesh :: Real LAl(const libMesh::Real xl, const libMesh:: Real yl
, const libMesh::Real t) {

return (Cable_Equation::data .EA()*xI+((t%1000.) /(
Cable_Equation :: data.EA()+(t%1000.))));

}s

libMesh :: Real LA2(const libMesh::Real xl, const libMesh:: Real yl
, const libMesh::Real t) {

return (Cable Equation::data .EA()*yl*((t%1000.) /(
Cable__Equation :: data.EA()+(t%1000.))));

}s

libMesh :: Real LB1(const libMesh:: Real x, const libMesh:: Real y,
const libMesh:: Real xl, const libMesh::Real yl, const libMesh
::Real t) {

A.4. Cddigo do problema da andlise global 91

return ((1.4+((t%1000.)/Cable_Equation::data.EA()))*fx(x,y,xl,
yl) s

}s

libMesh :: Real LB2(const libMesh:: Real x, const libMesh:: Real y,
const libMesh :: Real xl, const libMesh:: Real yl, const libMesh
::Real t) {

return ((1.+((t%1000.)/Cable_Equation::data.EA()))xfy (x,y,xl,
vl)i

b
libMesh :: Real LB3(const libMesh::Real x, const libMesh:: Real vy,
const libMesh:: Real xl, const libMesh::Real yl, const libMesh

::Real t) {

return ((0.5)xdenominator(xl,yl,2.) — (
x1000.) /Cable_Equation::data.EA())) ,2

libMesh :: Real All(const libMesh::Real xl,const libMesh:: Real yl,
const libMesh::Real t) {

return (Cable_Equation::data.EA()*((t+1000.)/(Cable_Equation
c:data . EA()+(t%1000.))));

}s

libMesh :: Real Al2(const libMesh:: Real x1,const libMesh:: Real yl,
const libMesh:: Real t) {

return 0;

b

92 APENDICE A. Cédigos

libMesh :: Real Al3(const libMesh:: Real xl,const libMesh:: Real yl,
const libMesh::Real t) {

return (xlxpow((Cable Equation::data.EA() /(Cable_Equation::
data .EA()+(t%1000.))) ,2.));

}s

libMesh :: Real A21(const libMesh:: Real xl,const libMesh::Real yl,
const libMesh:: Real t) {

return 0;

b

libMesh :: Real A22(const libMesh:: Real xl,const libMesh:: Real yl,
const libMesh:: Real t) {

return (Cable_Equation::data.EA()*((t+1000.) /(Cable_Equation
crdata . EA()+(t%1000.))));

}s

libMesh :: Real A23(const libMesh:: Real xl,const libMesh:: Real yl,
const libMesh:: Real t) {

return (ylspow((Cable Equation::data.EA()/(Cable_Equation::
data .EA()+(t%1000.))) ,2.));

}s

libMesh :: Real Bll(const libMesh:: Real x,const libMesh:: Real 1y,
const libMesh:: Real xl, const libMesh::Real yl, const libMesh
:: Real t) {

return (—3.%(1.+((t%1000.)/Cable_Equation:: data.EA()))=*
Cable_Equation :: data.Cd () *
sgn (Cable_Equation :: data.f(y)*yl)*(pow(
Cable_Equation ::data.f(y) ,2.))xxlxpow(yl,3.) /(

A.4. Cddigo do problema da andlise global 93

denominator (xl,yl,5./2.)));

}s

libMesh :: Real B12(const libMesh:: Real x,const libMesh:: Real vy,
const libMesh :: Real x1, const libMesh:: Real yl, const libMesh
:: Real t) {
return (3.%(1+((t%1000.)/Cable Equation::data.EA()))x
Cable__Equation :: data.Cd() %
sgn (Cable Equation::data.f(y)*yl)*(pow(
Cable_Equation::data.f(y) ,2.))*(pow(xl,2.)*pow(yl
,2.))/(denominator (xl,yl,5./2.)));

}s

libMesh :: Real B13(const libMesh:: Real x,const libMesh::Real 1y,
const libMesh :: Real x1, const libMesh:: Real yl, const libMesh
::Real t) { return 0.; };

libMesh :: Real B21(const libMesh:: Real x,const libMesh::Real 1y,
const libMesh :: Real xl, const libMesh:: Real yl, const libMesh
::Real t) {

return ((1.+((t*1000.)/Cable Equation:: data.EA()))x
Cable__Equation :: data.Cd () *
sgn (Cable Equation::data.f(y)x*yl)*(pow(
Cable_Equation::data.f(y) ,2.))=*(2%pow(xl,2.) *pow
(yl,2.) — pow(yl,4.))/(denominator(xl,yl,5./2))
) ;

}s

libMesh :: Real B22(const libMesh:: Real x,const libMesh::Real 1y,
const libMesh :: Real x1, const libMesh::Real yl, const libMesh
::Real t) {

return (—(1.4+((t*1000.) /Cable_Equation :: data.EA()))=x
Cable_Equation :: data.Cd() %

94 APENDICE A. Cédigos
sgn (Cable_Equation :: data.f(y)x*yl)x(pow(
Cable_Equation::data.f(y) ,2.))=*(2«pow(xl,3.)xyl
— xl*pow(yl,3.))/(denominator(xl,yl,5./2)));
}s

libMesh :: Real B23(const libMesh:: Real x,const libMesh::Real 1y,

const libMesh:: Real xl, const libMesh::Real yl, const libMesh
::Real t) { return 0.; };

libMesh :: Real Cl1(const libMesh:: Real x,const libMesh::Real 1y,

const libMesh:: Real xl, const libMesh::Real yl, const libMesh
::Real t) { return 0; };

libMesh :: Real C12(const libMesh:: Real x,const libMesh:: Real vy,

}s

const libMesh:: Real xl, const libMesh::Real yl, const libMesh
::Real t) {

return (2.%x(14+((t%1000.)/Cable_Equation::data.EA()))=*
Cable Equation::data.Cd()x*
sgn (Cable_Equation :: data.f(y)xyl)+*Cable Equation ::
data.f(y)xCable_Equation::data. fl(y)=(pow(yl,3.))
/(denominator(xl,yl,3./2.)));

libMesh :: Real C13(const libMesh:: Real x,const libMesh:: Real 1y,

b

const libMesh:: Real xl, const libMesh:: Real yl, const libMesh
::Real t) {

return (fx(x,y,xl,yl)/Cable Equation::data.EA());

libMesh :: Real C21(const libMesh::Real x,const libMesh:: Real vy,

const libMesh:: Real xl, const libMesh::Real yl, const libMesh
::Real t){ return 0; };

A.4. Cddigo do problema da andlise global 95

libMesh :: Real C22(const libMesh:: Real x,const libMesh:: Real vy,
const libMesh :: Real x1, const libMesh:: Real yl, const libMesh
::Real t) {

return (—2.%(1.+((t%1000.) /Cable_Equation :: data .EA()))=*
Cable__Equation :: data.Cd () *
sgn (Cable_Equation::data.f(y)*yl)*Cable Equation ::
data . f(y)xCable_Equation::data. fl (y)s*xlx(pow(yl
,2.))/(denominator(xl,yl,3./2.)));

}s

libMesh :: Real C23(const libMesh:: Real x,const libMesh::Real 1y,
const libMesh :: Real xl, const libMesh::Real yl, const libMesh
::Real t){ return (fy(x,y,xl,yl)/Cable_Equation::data.EA()

)5}

void assemble_cable_ linear_ MIXED (libMesh :: EquationSystems& es

const std::string& system_ name) {

libmesh assert_equal_to (system_name, 'Catenary');

const libMesh :: MeshBase& mesh = es.get_mesh();

const unsigned int dim = mesh.mesh_dimension () ;

libMesh :: LinearImplicitSystem& catenary static_ system = es.

get_system<libMesh :: LinearImplicitSystem > ("Catenary");

const unsigned int x_ var = catenary_static_system.
variable _number ("x");
const unsigned int y_var = catenary_static_system.

variable_number ('y");

96

APENDICE A. Cédigos

const unsigned int t_var = catenary_static_system.
variable__number ("t");

// get finite element type for "x" (same as the "y" type) —
both are displacement types

libMesh :: FEType fe disp type = catenary_ static_system.

variable type(x_ var);

// get finite element type for '"T"
libMesh :: FEType fe trac_ type = catenary static_ system.
variable type (t_var);

// Build a Finite Element object (pointer) of the specified
type for the displacement variables

libMesh :: AutoPtr<libMesh :: FEBase> fe_disp (libMesh :: FEBase::
build (dim, fe_ disp_type));

// Build a Finite Element object (pointer) of the specified
type for the traction wvariable

libMesh :: AutoPtr<libMesh :: FEBase> fe_trac (libMesh :: FEBase::
build (dim, fe trac_type));

// Gauss quadrature rule for numerical integration apropriate
for the displacement finite element type

libMesh :: QGauss qrule (dim, fe_disp_type.
default quadrature order());

// Setting the quadrature rule to the finite elemnt objects (
fe _disp is a pointer that will refer to different elements)

fe _disp—attach_quadrature_ rule (&qrule);

fe_trac—attach_ quadrature_ rule (&qrule);

// Defining references to cell —specific data that will be used

to assemble the linear system:

// Get the Jacobian *x (quadratre weight) for each quadrature
point point
const std::vector<libMesh :: Real>& JxW = fe_ disp—>get_ JxW () ;

A.4. Cédigo do problema da andlise global

97

// Get the element functions evaluated at the quadrature
points (first indice is the node to witch the shape
function is related and second is the quadrature point)

const std::vector<std::vector<libMesh :: Real> >& phi = fe_disp
—>get_phi();

// Get the element functions gradients evaluated at the
quadrature points (first indice is the node to witch the
shape function is related and second is the quadrature
point) — , each element is a libMesh:: RealGradient type (
dphi[qp]|[i](j) is the gradient of the shape function
related to the ith node evaluated in the gpth quadrature
point in the jth direction)

const std::vector<std::vector<libMesh :: RealGradient> >& dphi
fe_disp—>get_dphi();

// Same for traction
const std::vector<std::vector<libMesh :: Real> >& psi = fe_ trac
—>get_phi();

// A reference to the DofMap object for this system (this
object handles the index translation from node and element
numbers to degree of freedom)

const libMesh :: DofMap & dof map = catenary_static_system.
get__dof map () ;

// Data structures to contain the element mathix and right—
hand—side vector (rhs) contribution.

libMesh :: DenseMatrix<libMesh :: Number> Ke;

libMesh :: DenseVector<libMesh :: Number> Fe;

libMesh :: DenseSubMatrix<libMesh :: Number>
Kxx(Ke) , Kxy(Ke), Kxt(Ke),
Kyx(Ke), Kyy(Ke), Kyt(Ke),
Ktx(Ke), Kty(Ke), Ktt(Ke);

libMesh :: DenseSubVector<libMesh :: Number>
Fx(Fe), Fy(Fe), Ft(Fe);

98

APENDICE A. Cédigos

// This vector will hold the element dof indices (where in the
global system the element dof get mapped)

std :: vector<libMesh :: dof id_ type> dof indices;

std :: vector<libMesh :: dof id type> dof indices_ x;

std :: vector<libMesh :: dof id_ type> dof indices y;

std :: vector<libMesh ::dof id_ type> dof indices_ t;

// Get element iterator (the active is used for mesh—
refinement situations)

libMesh :: MeshBase :: const element iterator el = mesh.
active_local elements_begin ();

const libMesh :: MeshBase:: const element iterator end el = mesh.

active_local elements_end();
for (; el != end el; ++el) {

// Store the element we are working at in a pointer (elem)

const libMesh :: Elemx elem = xel;

// Get the global dof for the current element and the size
of them (how many nodes in each element)
dof map.dof indices (elem, dof indices);

elem, dof indices_y, y_var);

(

dof map.dof indices (elem, dof indices x, x_ var);
dof _map.dof_indices (
(

elem, dof indices_t, t_var);

dof map.dof indices

const unsigned int n_ dofs = dof_indices.size ();

const unsigned int n_x_dofs = dof_ indices_x.size ();
const unsigned int n_y dofs = dof indices y.size();
const unsigned int n_t_ dofs = dof indices t.size ();

//Compute the cell —specific data mentioned earlier
fe _disp—>reinit (elem);

fe_trac—>reinit (elem);

//Prevent cases in witch there exixts diferent elements
types in mesh (triangles and quadrilateral)

Ke.resize (n_dofs, n_dofs);

A.4. Cédigo do problema da andlise global 99

Fe.resize (n_dofs);

//The DenseSubMatrix.repostition () member takes the (
row offset, column offset, row size, column size).

//Similarly , the DenseSubVector.reposition () member takes
the (row__offset, row_size)

Kxx.reposition (x_varxn_x_ dofs, x_ vars«n_x_dofs, n_x_dofs,
n_x_dofs);

Kxy.reposition (x_varxn_x_dofs, y_ varsn_x_dofs, n_x_dofs,
n_y_ dofs);

Kxt.reposition (x_varsn_x_dofs, t_ varsxn_x_ dofs, n_x_dofs,

n_t_dofs);

Kyx.reposition (y_ varsn_x_ dofs, x varsn_x_dofs, n_y dofs,
n_x_dofs);

Kyy.reposition (y_ varxn_ x dofs, y_ var«n_ x dofs, n_y dofs,
n_y dofs);

Kyt.reposition (y_vars«n_x_dofs, t_varsxn_x_dofs, n_y_ dofs,
n_t_dofs);

Ktx.reposition (t_varsn_x_dofs, x_ varxn_x_dofs, n_t_dofs,
n_x_dofs);

Kty.reposition (t_varxn_ x dofs, y_ varxn_ x_ dofs, n_t_ dofs,
n_y dofs);

Ktt.reposition (t_varxn_x_dofs, t_varxn_x_dofs, n_t_dofs,
n_t_dofs);

Fx.reposition (x_varsn_x_dofs, n_x_dofs);
Fy.reposition (y_ varxn_x_dofs, n_y dofs);

Ft.reposition (t_varxn_x_ dofs, n_t_ dofs);

//Build element matrix and RHS using numerical integration (
note that the previus step solution is required hear)

for (unsigned int qp=0; gp<qrule.n_points(); qp++) {

// Values to hold previus solution and its gradient
libMesh :: Number x = 0.;
libMesh :: Number y = 0.;

100

APENDICE A. Cédigos

libMesh :: Number t = 0.;

libMesh :: Gradient grad x;
libMesh :: Gradient grad y;

for (unsigned int 1=0; l<n_x_dofs; 1++) {

x += phi[l][gp]*catenary static system.current solution
(dof_indices_x[1]);

y += phi[l][gp]*catenary static_system.current_solution
(dof_indices_y[1]);

grad_x.add_scaled (dphi[l][qp],catenary_ static_system.
current__solution (dof_indices_x[1]));

grad_y.add_scaled (dphi[l][qp],catenary_static_system.

current solution (dof indices y[1]));

for (unsigned int 1=0; l<n_t_dofs; 1++)
t += psi[l][qp]*catenary_ static_system.current_ solution

(dof indices_t[1]);
const libMesh:: Real x1 = grad_x(0);
const libMesh:: Real yl = grad_y(0);
for (unsigned int i=0; i<n_x_dofs; i++) {
Fx(i) += JxW[qp]*(LA1(xl,yl,t)*dphi[i][qp](0) — LBI(x

xl,yl, t)*«phi[i][qp] — All(xl,yl,t)*xlxdphi[i][qp](0)

A12(x1l,yl,t)*yl«dphi[i][qp](0) — A13(
xl,yl,t)*(t«1000.)«xdphi[i][qp](0) +
Bll(x,y,xl,yl,t)«xl«phi[i][qp] +

Bl12(x,y,xl,yl,t)«yls«phi[i][qp] + C12 (
v, xL,yl, t)sysphifi][qp] + CI3(x,

A.4. Cddigo do problema da andlise global 101

xl,yl,t)*(t+1000.)xphi[i][qp]);

Fy(i) 4= JxW[qp|*(LA2(xl,yl,t)*dphi[i][qp](0) — LB2(x,y,
xl,yl,t)*«phi[i][qp] — A21(xl,yl,t)*xlxdphi[i][qp](0)

A22(xl,yl, t)*xyl«dphi[i][qp](0) — A23(
xl,yl,t)*(t+1000.)«dphi[i][qp](0) +
B21(x,y,xl,yl,t)«xl«phi[i][qp] +

B22(x,y,xl,yl t)xyl«phi[i][qp] + C21(x

v, xl, vyl t)sxsxphifi][qp] + C22(x,y,
x1,yl,t)*y*phi[i][qp] +
C23(x,y,xl,yl,t)*(t«1000.)*phi[i][qp])

for (unsigned int j=0; j<n_x_dofs; j++) {

Kxx(i,j) += JxW[qp]*((—A1l(x]l,yl,t)«dphi[j][qp](0)*
[)) + (BlL(x,y,xl,yl, t)«dphi[j][qp](0)+

(Cll(x,y,xl,yl, t)*phi[j][qp]*phi

[i][ap]));

Kxy(i,j) += IXW[qp]*((—A12(x1,yl,t)«dphi[j]|[aqp](0)*
dphi[i][qp](0)) + (B12(x,y,xl,yl,t)*dphi[j][qp](0)=*
phi[i][agp]) +

(C12(x,y,xl,yl,t)*phi[j][qp]*phi
[i][ap]));

Kyx(i,j) += JxW[qp]*((—A21(x],yl,t)*dphi[j][aqp](0)*
dphi[i][qp](0)) + (B21(x,y,xl,yl,t)*dphi[j][qp](0)=*
phi[i][agp]) +

(C21(x,y,xl,yl,t)*xphi[j][qp]*phi
[i][ap]));

Kyy(i,j) += XWlap]*((—A22(xl,yl,t)«dphi[j][ap](0)=*
dphi[i][qp](0)) + (B22(x,y,xl,yl,t)*dphi[j][qp](0)=*
phi[i][agp]) +

(C22(x,y,xl,yl,t)*phi[j][qp]*phi

[i]lap])):

102 APENDICE A. Cédigos

for (unsigned int j=0; j<n_t_dofs; j++) {

Kxt(i,j) += xW/[qp|*1000x(—A13(x]l,yl,t)*psi[j][ap]x
dphi[i][ap](0) + CL3(x,y,xl,yl,t)*psi[j][ap]*phili
JTar]) ;

Kyt(i,j) 4= xXW/[qp|*1000x(—A23(x1 ,yl,t)*psi[j][ap]x
dphi[i][ap](0) + C23(x,y.xl,yl,t)*psi[j][ap]*phili
Jlap]) ;

for (unsigned int i=0; i<n_t_dofs; i++) {

Ft(i) += JxXW[qp]*1000%(—LB3(x,y,xl,yl,t)xpsi[i][qp] + xI
«xlxpsi[i][ap] + ylxylxpsi[i][ap] —
(1.4+((t*1000.) /Cable__Equation ::
data .EA()))*((t*1000)/
Cable Equation::data.EA())x*psi|

i]lap]);
for (unsigned int j=0; j<n_x_dofs; j++) {

Ktx(i,j) += JxW[qp]*1000x(xlxdphi[j][qp](0)*psi[i][qp
1)

Kty (i,j) += JxW[qp]*1000*(yl+dphi[j][qp](0)*psi[i][qp
BE

for (unsigned int j=0; j<n_t_dofs; j++)
Ktt(i,j) += JxW[qp|*1000%«1000+(—(1+((t*1000.)/
Cable Equation::data.EA()))=(1./Cable Equation::

A.4. Cédigo do problema da andlise global 103

data .EA())*psi[j][ap]*psi[i][ap]);

end of the quadrature point gp—loop
1 I 11 I

dof map. heterogenously constrain_ element matrix and vector (

Ke, Fe, dof_indices);

catenary static_ system.matrix—>add matrix (Ke, dof indices);

catenary_ static_system.rhs—add_vector (Fe, dof_indices);
} // end of element loop

return;

//END Cable Equation MIXED functions

A.4.3 main

//
// Cable all.C

//
//

// Created by rodrigo broggi on 16/10/14.
//
//

#include "Cable Equation.h'

//This functions are input data to the problem and are to be

changed for each different physical problem:

//Example of constant profile solution

104 APENDICE A. Cédigos

inline libMesh::Real current profile(const libMesh::Real y) {

return 1; }

void initial_solution (libMesh :: DenseVector<libMesh :: Number> &
output, const libMesh::Point & p, const libMesh:: Real);

inline libMesh :: Real Length() { return 2000.; }
inline libMesh:: Real Depth() { return 1500.; }

inline libMesh::Real fnonlin h(const libMesh::Real h) { return (
Length () — (h/2.)*sqrt (4.%(pow((Depth()/h),2.))+1) — (pow(h
,2.) /(4.%xDepth()))*asinh (2.xDepth()/h)); }

inline libMesh:: Real D_fnonlin_h(const libMesh::Real h) { return
(—(1./2.)xsqrt (4.%(pow ((Depth()/h) ,2.))+1.) + 2.%pow((Depth
()/h) ,2.)«(1./(sqrt (4.%(pow ((Depth()/h),2))+1.))) — (h/(2.x%
Depth ()))*asinh (2.%(Depth()/h)) + (1./2.)*(1./(4%(pow ((Depth
()/h),2))+1))); }

inline libMesh::Real fnonlin x(const libMesh::Real x, const
libMesh :: Real s, const libMesh::Real h) { return (s — (x/2.)x
sqrt (4.xpow ((Depth () *x/(h*h)) ,2.)4+1.) — (pow(h,2.) /(4.«xDepth
()))=*asinh (2.%xDepth ()*x/(h*h))); }

inline libMesh::Real D_fnonlin x(const libMesh::Real x, const

libMesh :: Real s, const libMesh::Real h) { return (—(1./2.)x
sqrt (4.« (pow ((Depth () *x/(hxh)) ,2.))+1.) — 2.xpow ((Depth()=*x/(
hxh)) ;2.) % (1./(sqrt (4.%(pow((Depth()=*x/(hxh)) ,2.))+1.))) —
(1./2.)%(1./(4.%(pow ((Depth ()*x/(hxh)),2.))+1.)));}

libMesh :: Real find_ h () ;

A.4. Cddigo do problema da andlise global 105

int main (int argc, charsx argv)

{
libMesh :: LibMeshInit init (argc, argv);

GetPot command_line (argc, argv);

std ::ifstream data_input('data input.txt");
Cable_Problem_Data data(data_input,¤t_profile &
initial solution);

data_input.close();

data.print () ;

boost ::scoped_ptr<Cable Equation> cable_ equation;

std ::string type = "Both';

libMesh :: Mesh mesh(init.comm());

3

if (command_line.search (1, "—type")) {
type = command_line.next (type);
if (type = "CLASSIC"){

cable_equation.reset (new Cable Equation CLASSIC(data
,command_ line, init));
cable_equation—>print_data () ;
cable__equation—>solve__cable_problem_complete () ;
}
else if (type = "MIXED"){
cable equation.reset (new Cable Equation MIXED (data ,

command_line, init));

106 APENDICE A. Cédigos

cable_equation—>print_data () ;

cable__equation—>solve__cable_problem_complete () ;

else{
std :: cerr<<'The, jargument of —type, should be either
MIXED ,or ,CLASSIC. ,User passed: '<<type<<std ::endl

exit (1)

else{

cable equation.reset (new Cable Equation CLASSIC(data,
command_line, init));
cable__equation—>print_ data () ;

cable__equation—>solve_cable_ problem complete () ;

cable_equation.reset (new Cable Equation MIXED (data ,
command_line, init));

cable equation—>solve_ cable_ problem_complete() ;

return 0;

libMesh :: Real find_ h() {

libMesh :: Real h_c;
libMesh :: Real h_old = Depth() %0.5;

A.4. Cddigo do problema da andlise global

107

libMesh :: Real error = 1;
unsigned int i = 0;

unsigned int MAXIT = 50;

while (error > 0.001 & i < MAXIT) {
h ¢ =h old — (fnonlin _h(h old)/D_fnonlin h(h old));
error = abs(h_c — h_old);

h old = h c¢;

return h c;
void initial solution (libMesh :: DenseVector<libMesh :: Number> &
output, const libMesh::Point & p, const libMesh:: Real) {
const libMesh::Real h = find_h();
libMesh :: Real x c;
libMesh :: Real x_old = p(0);
libMesh :: Real error = 1;
unsigned int i = 0;

unsigned int MAXIT = 50;

while (error > 0.001 & i < MAXIT) {

108 APENDICE A. Cédigos

x_c¢ = x_old — (fnonlin_x(x_old,p(0),h)/D_fnonlin_x(x_old
,p(0),h));

error = abs(x_c¢ — x_old);

x_ old = x_c¢;

output (0) = x_c;

output (1) = (Depth()/pow(h,2))*(pow(x_c,2));

((output.size() < 3) 7 output(1l) = (Depth()/pow(h,2))*(pow(
X _¢,2)) : output(2) = 4.e2 + (1.e3 — 4.e2)*p(0)/(1800.))

void initial solution_ mixed (libMesh :: DenseVector<libMesh : : Number
> & output, const libMesh::Point & p, const libMesh::Real) {
const libMesh::Real h = find_h();
libMesh :: Real x c;
libMesh :: Real x old = p(0);
libMesh :: Real error = 1;
unsigned int i = 0;

unsigned int MAXIT = 50;

while (error > 0.001 & i < MAXIT) {

x_c¢ = x_old — (fnonlin_x(x_old,p(0),h)/D_fnonlin_x(x_old
P (0) 1))

A.4. Cddigo do problema da andlise global 109

error = abs(x_c¢ — x_old);

x old = x c¢;

14+
}
std :: cout<<std ::endl<<'Size seen: '"<<output.size ()<<std::
endl ;

output (0) = x_c;

output (1) = (Depth()/pow(h,2))*(pow(x_c,2));

((output.size() < 3) 7 output(l) = (Depth()/pow(h,2))*(pow(
X ¢,2)) : output(2) = 4.e2 + (1.e3 — 4.e2)*p(0)/(1800.))

Y

	Folha de rosto
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Sumário
	Introdução
	Introdução
	Revisão da Literatura
	Revisão da Literatura
	Enquadramento na teoria geral das EDPs
	A formulação variacional do problema geral
	A formulação variacional como princípio do trabalho virtual
	Questões de existência e unicidade

	Aproximação numérica pelo método de Galerkin
	O método de Rayleigh-Ritz e introdução ao método dos elementos finitos
	O método de Galerkin

	O método de Newton para solução de sistemas não lineares
	O problema: análise global
	Equações de equilíbrio
	Relações Cinemáticas
	Relação Constitutiva
	Princípio da mínima energia potencial total e simplificações possíveis
	Formulação Dual

	Materiais e métodos
	Materiais e métodos
	Análise e formulação do problema
	Formulação completa do problema global
	Formulação fraca clássica
	A formulação fraca mista

	Discretização e aproximação com o método de Galerkin
	Método de Galerkin - formulação clássica
	Método de Galerkin - formulação mista

	O problema local em sua formulação axissimétrica
	Difusão térmica
	Inclusão do efeito térmico no problema axissimétrico

	Os instrumentos utilizados
	A linguagem C++ e a biblioteca libmesh
	O método de refinamento cooperativo
	Complexidade e eficiência do código para o problema axissimétrico

	Resultados
	Resultados
	Resultados do problema global
	Variação do comprimento
	Variação da magnitude de corrente
	Variação da magnitude do peso imerso
	Importância relativa das variações

	Resultados do problema axissimétrico
	Resultados do problema de difusão de temperatura
	Análise estrutural em ausência do efeito térmico
	Análise estrutural em presença do efeito térmico

	Discussão
	Discussão
	Conclusão
	Conclusão
	Anexos
	Elasticidade linear estática
	Equações do equilibrio
	Cinemática e Congruência em Pequenas Deformações
	Cinemática do meio e equações de campo
	O tensor deformação
	Linearização

	Relações constitutivas e equação de Navier
	Relações constitutivas e Lei de Hooke
	Equação de Navier

	Complementos de análise funcional
	Espaço Normado, de Banach e de Hilbert
	Funcionais e formas bilineares
	Diferenciação em espaços lineares
	Distribuições
	Espaços de Sobolev

	Referências
	Apêndices
	Códigos
	Código do problema de difusão de temperatura
	Código do problema estrutural sem efeitos térmicos
	Código do problema estrutural com efeitos térmicos
	Código do problema da análise global
	Header - Protótipo das classes e das funções
	Implementação das funções membro e auxiliares - source code
	main

